Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sequencing studies help pinpoint gene in Prader-Willi syndrome

30.09.2013
As so many genome studies do, this study published online in the journal Nature Genetics began with a single patient and his parents who were in search of a diagnosis.

The parents of this first patient sought genetic testing for Prader-Willi syndrome when he was only a year old, but the test, which was still in its infancy, came back negative.

For the next 12 years, his parents were left in limbo. He had many features of the disease – including lack of muscle tone, feeding difficulties and failure to thrive early on. Autism spectrum disorder and mild intellectual disability became evident as he grew older.

Dr. C. Thomas Caskey, then with UTHealth and now with Baylor College of Medicine, referred the patient to Dr. Christian Schaaf, an assistant professor of molecular and human genetics at Baylor College of Medicine and a faculty member at the Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, for an evaluation. Schaaf agreed that the boy had many of the outward signs consistent with Prader-Willi, but others were lacking, such as the morbid obesity, which is typically caused by a very aggressive appetite.

Dr. Manuel L. Gonzalez-Garay (co-first and co-corresponding author), assistant professor and bioinformatics expert at the University of Texas Health Science Center at Houston's Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, identified a single change (called a point mutation) in the gene MAGEL2 using highly accurate whole genome sequencing information from Complete Genomics, Inc., of Mountain View California. This gene is located in the area of chromosome 15, which researchers knew was involved in Prader-Willi syndrome. The single base deletion found in this GC-rich and difficult to sequence gene is a frame-shift mutation that disrupts activity of the protein product of MAGEL2.

Prader-Willi syndrome is an imprinted disease, which means only one of the two copies of the gene inherited from your parents is working. The other is "silenced," usually during the formation of eggs or sperm. In this case, neither parent had a mutation, meaning that the mutation occurred first in this child. However, it still mattered whether the mutation came from the mother or the father.

The team from UTHealth and Complete Genomics then performed an involved analysis that determined that the mutated gene was on the paternal chromosome 15.

"Because the mom's copy of the gene is silenced and the dad's copy is deficient, there is no functional copy of the gene in his body," said Schaaf. "It was a nice collaboration among Baylor, UTHealth and Complete Genomics. But it was only one patient. When you identify a new gene and want to prove that it is the real cause of disease, you really need to identify several patients with mutations in the same gene, and show that they also have similar clinical manifestations. You also ought to consider the severity of the mutation and how rare the mutation is."

To start, they began to look for other patients. They asked the Baylor Whole Genome Sequencing Laboratory to find out if there had been similar mutations found in patients who had their exomes or protein-coding portions of the genome sequenced. They searched through the records of 1,200 and found three more patients with mutations in the same gene. One of the three had classic Prader-Willi syndrome, the other two were classified as Prader-Willi like. All three children had the standard molecular testing for Prader-Willi when they were infants, with negative results.

"This is the first report of point mutations causing Prader-Willi syndrome," said Schaaf. "Always before, researchers had identified deletions in the chromosome or uniparental disomy, which means that both chromosomes 15 were inherited from the mother, and none from the father. We have shown that also a single base pair alteration (of nucleotides in the genetic material) can cause Prader-Willi syndrome."

The Baylor lab began offering the testing on July 15. Not only does it offer testing for the mutation but also to identify whether the mutation occurs on the gene from the mother or the father.

"This study speaks to the value of collaboration and the power of the whole genome testing," said Schaaf. "It showed me again how important it is to these families to find 'an answer'. Many have been through years of uncertainty, with dozens of diagnostic tests coming back with negative results. Finding the cause puts things at rest, and empowers the families, as they can get better anticipatory guidance and better estimate of recurrence risk within their family."

Perhaps some day, he said, it might be possible to "un-silence" the silenced copy of the gene. "It's been done in mice with other diseases involving imprinted genes, and there's some evidence it might work in humans as well."

Others who took part in this work include: Fan Xia, Lorraine Potocki, Baili Zhang, Arthur L. Beaudet, and Yaping Yang, all of BCM; Brock A. Peters, Mark A. McElwain, and Radoje Drmanac, all from Complete Genomics; and Karen W. Gripp of Alfred I. DuPont Hospital for Children in Wilmington, Delaware.

Funding for this work comes from the Joan and Stanford Alexander family, the Cullen Foundation for Higher Education and the Houston Foundation. Schaaf is also a recipient of a Clinical Scientist Development Award by the Doris Duke Charitable Foundation.

Glenna Picton | EurekAlert!
Further information:
http://www.bcm.edu

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>