Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sequencing of first frog genome sheds light on treating disease

07.05.2010
2 UH biologists land cover story in Science magazine with major collaborative effort

A pair of University of Houston researchers contributed to the assembly of the first comprehensive DNA sequence of an amphibian genome, which will shed light on the study of embryonic development, with implications for preventing birth defects and more effectively treating many human diseases.

Amy Sater and Dan Wells, both professors in UH's department of biology and biochemistry, collaborated with a number of other scientists in what Sater calls "a massive and international effort," landing them a cover story – "The Genome of the Western Clawed Frog Xenopus tropicalis" – in a recent issue of Science magazine, the world's leading journal of original scientific research, global news and commentary.

Originating in West Africa, Xenopus tropicalis is a frog that is extremely important for studies of embryonic development and the regulation of cell division. The genes in frogs are highly similar to those in mice and humans, as are the key communication pathways. These molecular communication pathways serve as lines of communication between cells and are critical to control how cells choose to form the brain, limbs, muscle cells and the pancreas. They also are important for the maintenance and differentiation of stem cells, including those that maintain the lining of our intestines. Many experiments can be carried out in Xenopus more quickly and easily, as well as far less expensively, than in mouse embryos, and the tools provided by the genome assembly will transform research using this animal.

"In many cases, if one of these key communication pathways is misregulated due to a key gene being mutated, it can lead to several major types of cancer," Sater said. "This particular frog is a terrific animal in which to study these pathways because you can study both the biochemistry of how the pathways work, as well as what the pathway is actually doing in developing embryos.

"Working out the biochemical mechanism is extremely difficult to do in a mouse embryo. We can obtain hundreds of these frog embryos that are developing synchronously, and because they are fertilized and develop outside the mother, we can watch and manipulate specific events much more easily and on a much larger scale than in mouse embryos."

Sater and Wells' contributions were in the difficult process of assembly, after they collaborated with scientists from the Human Genome Sequencing Center at the Baylor College of Medicine to generate a genetic map. The project is funded by a nearly $2 million grant from the National Institutes of Health. Ultimately, Sater likened sequencing a genome to assembling a 10,000-piece jigsaw puzzle without having a detailed picture from which to work. The genetic map prepared by Sater and her colleagues provided a big part of that picture to guide long-range assembly of the puzzle.

Once the UH and Baylor team's portion was complete, they compared the short sequences used as landmarks in their genetic map with the genome sequences. These comparisons allowed their colleagues at University of California, Berkeley, to complete the assembly of the genome.

"Sequencing and assembling a genome is basically science infrastructure – the equivalent of building roads and bridges – and once the infrastructure is in place, everyone can benefit," Sater said. "This work is an enormous contribution to research now in progress throughout the world, and essentially every study that uses Xenopus as a research animal gets a big boost from this project."

Big science like this, Sater said, has a lot of authors and provides fundamental, important information for all biologists in trying to understand how specific genes function. Important contributions also came from individuals at the Joint Genome Institute, Cambridge, University of California Irvine, Washington University School of Medicine, University of Virginia, the National Institutes of Health, the Université d'Evry in France, the National Institute for Medical Research in the United Kingdom and the Okinawa Institute for Science and Technology in Japan.

"Many human diseases, such as cancer, heart disease and hereditary conditions, can be traced back to changes in how genes are expressed, and it may be possible to treat these and other diseases more effectively if we understand how these genes function and how they are turned on and off," Sater said. "Having this blueprint provides us with landmarks that we can use to change when and where certain genes are expressed. The toolkit provided by this study will allow us to examine the functions of individual genes that have already been identified as key players in specific events and important to human health."

About the University of Houston

The University of Houston is a comprehensive national research institution serving the globally competitive Houston and Gulf Coast Region by providing world-class faculty, experiential learning and strategic industry partnerships. UH serves 37,000 students in the nation's fourth-largest city in the most ethnically and culturally diverse region in the country.

About the College of Natural Sciences and Mathematics

The UH College of Natural Sciences and Mathematics, with 170 ranked faculty and approximately 4,500 students, offers bachelor's, master's and doctoral degrees in the natural sciences, computational sciences and mathematics. Faculty members in the departments of biology and biochemistry, chemistry, computer science, earth and atmospheric sciences, mathematics and physics conduct internationally recognized research in collaboration with industry, Texas Medical Center institutions, NASA and others worldwide.

For more information about UH, visit the university's Newsroom at http://www.uh.edu/news-events/.

To receive UH science news via e-mail, visit http://www.uh.edu/news-events/mailing-lists/sciencelistserv/index.php.

For additional news alerts about UH, follow us on Facebook at http://tinyurl.com/6qw9ht and Twitter at http://twitter.com/UH_News.

Lisa Merkl | EurekAlert!
Further information:
http://www.uh.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>