Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sequencing electric eel genome unlocks shocking secrets


For the first time, the genome of the electric eel has been sequenced. This discovery has revealed the secret of how fishes with electric organs have evolved six times in the history of life to produce electricity outside of their bodies.

The research, published in the current issue of Science, sheds light on the genetic blueprint used to evolve these complex, novel organs. It was co-led by Michigan State University, University of Wisconsin-Madison, University of Texas-Austin and the Systemix Institute.

For the first time, the genome of the electric eel has been sequenced.

Credit: Courtesy of MSU

"It's truly exciting to find that complex structures like the electric organ, which evolved completely independently in six groups of fish, seem to share the same genetic toolkit," said Jason Gallant, MSU zoologist and co-lead author of the paper. "Biologists are starting to learn, using genomics, that evolution makes similar structures from the same starting materials, even if the organisms aren't even that closely related."

Worldwide, there are hundreds of species of electric fish in six broad lineages. Their diversity is so great that Darwin himself cited electric fishes as critical examples of convergent evolution, where unrelated animals independently evolve similar traits to adapt to a particular environment or ecological niche.

All muscle and nerve cells have electrical potential. Simple contraction of a muscle will release a small amount of voltage. But between 100 and 200 million years ago, some fish began to amplify that potential by evolving electrocytes from muscle cells, organized in sequence and capable of generating much higher voltages than those used to make muscles work.

"Evolution has removed the ability of muscle cells to contract and changed the distribution of proteins in the cell membrane; now all electrocytes do is push ions across a membrane to create a massive flow of positive charge," said Lindsay Traeger, U-W graduate student and co-author of the study.

The "in-series alignment" of the electrocytes and unique polarity of each cell allows for the "summation of voltages, much like batteries stacked in series in a flashlight," said Michael Sussman, U-W biochemist.

The additional current required for the power comes from the fact that an eel body contains many millions of such "batteries" working together and firing their electrical discharge simultaneously.

The new work provides the world's first electric fish genome sequence assembly. It also identifies the genetic factors and developmental pathways the animals use to grow an organ that, in the case of the electric eel, can deliver a jolt several times more powerful than the current from a standard household electrical outlet. Other electric fishes use electricity for defense, predation, navigation and communication.

Future MSU research will focus on testing the role of these genes in the development of electric organs, using state-of-the-art transgenic techniques in Gallant's newly constructed laboratory.


The research was funded by the National Science Foundation, the W.M. Keck Foundation and the National Institutes of Health.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

For MSU news on the Web, go to MSUToday. Follow MSU News on Twitter at

Layne Cameron | Eurek Alert!
Further information:

Further reports about: MSU Sequencing batteries eel electrocytes organs sequence structures

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>