Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sequencing algae's genome may aid biofuel production

20.11.2015

There's an ancient group of algae that evolved in the world's oceans before our backboned ancestors crawled onto land. They are so numerous that their gigantic blooms can affect the weather, and they account for 30 to 40 percent of all photosynthesis in the world's oceans.

But until recently, scientists interested in these single-celled creatures knew next to nothing about their genes.


Close-up view of Chrysochromulina tobin.

Credit: Rose Ann Cattolico

University of Washington scientists have sequenced the complete genetic makeup of one of these algae. As they recently reported in the journal PLOS Genetics, it is only the second time that researchers have sequenced the genome of one of these ecologically important and plentiful algae, known as haptophytes. Researchers hope to better understand haptophytes and perhaps transform them into an important new tool for aquaculture, biofuel production and nutrition.

"Haptophytes are really important in carbon dioxide management and they form a critical link in the aquatic foodchain," said senior author and UW biology professor Rose Ann Cattolico. "This new genome shows us so much about this group."

The haptophyte Cattolico and her team studied is Chrysochromulina tobin, and it thrives in oceans across the globe. The researchers spent years on a series of experiments to sequence all of Chrysochromulina's genes and understand how this creature turns different genes on and off throughout the day.

In the process, they discovered that Chrysochromulina would make an ideal subject for investigating how algae make fat, a process important for nutrition, ecology and biofuel production.

"It turns out that their fat content gets high during the day and goes down during the night," said Cattolico. "A very simple pattern, and ideal for follow-up."

She believes that that these extreme changes in fat content -- even within the span of a single day -- may help ecologists understand when microscopic animals in the water column choose to feast upon these algae. But knowledge of how the algal species regulates its fat stores could also help humans.

"Algae recently became more familiar to the general populace because of biofuel production," said Cattolico. "We needed a simple alga for looking at fat production and fat regulation."

This led Cattolico to team up with Blake Hovde, then a graduate student in the UW Department of Genome Sciences, to sequence the complete genome of this species. Hovde wanted to work on algae in biofuel production, and Chrysochromulina was ideally suited for the task because, unlike most other haptophytes, it has no protective cell wall.

Hovde and Cattolico uncovered other surprises in the Chrysochromulina genome. Like other algae and plants, Chrysochromulina uses light to make food, through the process of photosynthesis. But they also found another gene, called xanthorhodopsin, that may let the alga harvest light and do work outside of the traditional photosynthesis pathway. Cattolico does not know how the alga uses this gene, but would like to investigate this in the future.

In addition, they identified numerous genes that appear to harbor antibiotic activity, which may be useful as the need for new antibiotics continues to rise. But Chrysochromulina is not universally against bacteria. Through this project, Cattolico and her team discovered that there are at least 10 bacterial species that appear to enjoy living near Chrysochromulina.

"That leads to some interesting questions," said Cattolico. "Is Chrysochromulina selectively using its antimicrobials? Is it 'farming' beneficial bacteria in its neighborhood?"

Cattolico would like to understand how these bacteria affect which genes Chrysochromulina switches on and off. That information may pave the way for new studies of the ecology of haptophytes, which could be critical in the face of a changing global climate.

"Haptophytes are very important to our ocean health, especially with these massive --sometimes toxic -- blooms they make," said Cattolico. "We need to understand this issue because ecosystems are only going to get more compromised with climate change."

###

The research was published Sept. 23 in the online, open-access journal PLOS Genetics. First author Hovde is now a postdoctoral researcher at the Los Alamos National Laboratory. Other UW co-authors are Chloe Deodato, Heather Hunsperger, Scott Ryken, Will Yost, Johnathan Patterson and Ray Monnat. Ramesh Jha and Shawn Starkenburg were co-authors from Los Alamos National Laboratory, as well as Steven Barlow from San Diego State University. The research was funded by the U.S. Department of Energy, Washington Sea Grant, the National Science Foundation, the National Institutes of Health, Los Alamos National Laboratory and the Defense Threat Reduction Agency.

For more information, contact Cattolico at 206-543-1627 or racat@u.washington.edu.

Grant numbers: U.S. Department of Energy (DE-EE0003046), Sea Grant (NA07OAR-4170007), Los Alamos (WSYN_BIO), Defense Threat Reduction Agency (CBCALL 12-LS6-1-0622), NIH (1RL1CA133831, T32 HG00035), NSF (DGE-0718124, DGE-1256082).

Media Contact

James Urton
jurton@uw.edu
206-543-2580

 @UW

http://www.washington.edu/news/ 

James Urton | EurekAlert!

Further reports about: Genetics Photosynthesis Sequencing alga bacteria biofuel production ecology genes

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Lightning, with a chance of antimatter

24.11.2017 | Earth Sciences

A huge hydrogen generator at the Earth's core-mantle boundary

24.11.2017 | Earth Sciences

Scientists find why CP El Niño is harder to predict than EP El Niño

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>