Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Separation of DNA and proteins through improved gel electrophoresis

04.03.2014

Medical diagnoses and DNA sequencing can be made cheaper, faster and more reliable using a new miniaturized technique for gel electrophoresis based on conducting polymer materials, according to researchers at Linköping University in Sweden.

Gel electrophoresis is a process through which different proteins or DNA fragments are separated so that they can be identified and studied. Today, most separations require considerable manual work and are carried-out on large gels which require several hours to complete.

The industry needs miniaturized systems capable of automatically performing a large number of separations simultaneously, and much more quickly.

PhD students Katarina Bengtsson and Sara Nilsson from the Transport and Separations Group at Linköping University have demonstrated a significant step toward miniaturized gel electrophoresis. Their finding – recently published in the scientific journal PLoS ONE – was achieved by developing conducting polymer materials to replace platinum electrodes that are traditionally used in gel electrophoresis systems.

This advance allows the stationary metal electrodes fixed in electrophoresis equipment to be replaced. The plastic electrodes can then be included as part of a disposable cassette containing the separation gel. This eliminates cross-contamination between gels run in sequence. Other issues in electrophoresis are bubble formation and pH-changes caused by water electrolysis.

PhD student Per Erlandsson has previously shown that the conducting polymer materials are able to be oxidized and reduced themselves, thereby eliminating the need to electrolyze water in electrokinetic systems.

"One of our strategies is to find ways to use these materials, developed for the printed electronics industry, in applications other than electronics and optoelectronics. We hope that this result will accelerate the automation and miniaturization of gel electrophoresis, which in turn can make medical diagnoses and DNA sequencing cheaper, faster, and more reliable," says Assoc. Prof. Nathaniel Robinson, leader of the research group, on their "work as a logical extension of previous studies on conducting polymer electrodes in electrokinetic systems."

The technology will be further developed by the university start-up company LunaMicro AB.

###

Article: Conducting Polymer Electrodes for Gel Electrophoresis av Katarina Bengtsson, Sara Nilsson och Nathaniel D. Robinson. PLoS ONE open access February 2014. http://dx.doi.org/10.1371/journal.pone.0089416.

Nathaniel Robinson | EurekAlert!
Further information:
http://www.liu.se

Further reports about: DNA Gel Linköping PLoS bubble electrodes electrophoresis eliminating materials proteins

More articles from Life Sciences:

nachricht Biology meets geometry
31.10.2014 | University of California - Santa Barbara

nachricht Blocking a Fork in the Road to DNA Replication
31.10.2014 | Whitehead Institute for Biomedical Research

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

Event News

Registration Open Now: 18th International ESAFORM Conference on Material Forming

28.10.2014 | Event News

Comparing Apples and Oranges? A Colloquium on International Comparative Urban Research

22.10.2014 | Event News

Battery Conference April 2015 in Aachen

16.10.2014 | Event News

 
Latest News

Siemens secures two new orders for wind power projects in Canada

31.10.2014 | Press release

Tropical Storm Vance's Center Looks Like a Pumpkin to NASA's Terra Satellite

31.10.2014 | Earth Sciences

Improved funding for innovative companies: KfW introduces "Entrepreneur Loan Plus"

31.10.2014 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>