Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Separation of DNA and proteins through improved gel electrophoresis


Medical diagnoses and DNA sequencing can be made cheaper, faster and more reliable using a new miniaturized technique for gel electrophoresis based on conducting polymer materials, according to researchers at Linköping University in Sweden.

Gel electrophoresis is a process through which different proteins or DNA fragments are separated so that they can be identified and studied. Today, most separations require considerable manual work and are carried-out on large gels which require several hours to complete.

The industry needs miniaturized systems capable of automatically performing a large number of separations simultaneously, and much more quickly.

PhD students Katarina Bengtsson and Sara Nilsson from the Transport and Separations Group at Linköping University have demonstrated a significant step toward miniaturized gel electrophoresis. Their finding – recently published in the scientific journal PLoS ONE – was achieved by developing conducting polymer materials to replace platinum electrodes that are traditionally used in gel electrophoresis systems.

This advance allows the stationary metal electrodes fixed in electrophoresis equipment to be replaced. The plastic electrodes can then be included as part of a disposable cassette containing the separation gel. This eliminates cross-contamination between gels run in sequence. Other issues in electrophoresis are bubble formation and pH-changes caused by water electrolysis.

PhD student Per Erlandsson has previously shown that the conducting polymer materials are able to be oxidized and reduced themselves, thereby eliminating the need to electrolyze water in electrokinetic systems.

"One of our strategies is to find ways to use these materials, developed for the printed electronics industry, in applications other than electronics and optoelectronics. We hope that this result will accelerate the automation and miniaturization of gel electrophoresis, which in turn can make medical diagnoses and DNA sequencing cheaper, faster, and more reliable," says Assoc. Prof. Nathaniel Robinson, leader of the research group, on their "work as a logical extension of previous studies on conducting polymer electrodes in electrokinetic systems."

The technology will be further developed by the university start-up company LunaMicro AB.


Article: Conducting Polymer Electrodes for Gel Electrophoresis av Katarina Bengtsson, Sara Nilsson och Nathaniel D. Robinson. PLoS ONE open access February 2014.

Nathaniel Robinson | EurekAlert!
Further information:

Further reports about: DNA Gel Linköping PLoS bubble electrodes electrophoresis eliminating materials proteins

More articles from Life Sciences:

nachricht Two decades of training students and experts in tracking infectious disease
27.11.2015 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Increased carbon dioxide enhances plankton growth, opposite of what was expected
27.11.2015 | Bigelow Laboratory for Ocean Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Siemens to supply 126 megawatts to onshore wind power plants in Scotland

27.11.2015 | Press release

Two decades of training students and experts in tracking infectious disease

27.11.2015 | Life Sciences

Coming to a monitor near you: A defect-free, molecule-thick film

27.11.2015 | Materials Sciences

More VideoLinks >>>