Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Separate but Together

Core/shell photocatalyst with spatially separated cocatalysts for more efficient water splitting

Photocatalytic splitting of water uses sunlight to split water into hydrogen and oxygen. It is an environmentally friendly way to obtain hydrogen for fuel cells.

In the journal Angewandte Chemie, Japanese researchers have now introduced a new method for the production of more effective photocatalysts. Their method uses tiny hollow spheres coated with different cocatalysts on the inside and the outside.

In a photocatalytic water splitting reaction, the catalyst, usually a semiconductor, captures photons. Electrons get excited and rise from the valence band to the conduction band. The electronic voids left behind in the valence band are regarded as positively charged “holes”. If the electrons and holes manage to migrate to the surface of the catalyst before the opposite charges recombine, they can be transferred to water molecules and used to reduce the water to make hydrogen or oxidize it to make oxygen.

New catalyst systems are constantly being researched and developed, but their efficiency has always been found to be lacking. Theoretically, catalysts based on tantalum nitride (Ta3N5) should be especially well-suited candidates for photocatalysis with visible light. However, two main problems have hindered their successful use in practice: First, on the surface of the catalyst, the resulting products, oxygen and hydrogen, immediately react to produce water. Second, the charge separation of the electrons and holes formed in the reaction doesn’t quite work correctly as they recombine too quickly.

Cocatalysts are meant to improve efficiency by capturing the electrons or holes and transferring them to the water. Precious metals like platinum can improve the individual step of reduction to hydrogen; metal oxides such as iridium and cobalt oxide catalyze the oxidation to oxygen. However, equipping photocatalysts with both types of cocatalyst has not resulted in any resounding successes.

A team led by Kazunari Domen at the University of Tokyo had a clever idea: what if both cocatalysts were not uniformly distributed over the catalyst, but instead were spatially separated? To achieve this, the researchers developed a simple method for the production of core/shell microparticles. In the first step, they coated silicon dioxide microspheres with platinum nanoparticles and then with tantalum oxide, which was converted to tantalum nitride by reaction with ammonia in the next step.

The spheres were then coated with either iridium or cobalt oxide. The silicon dioxide core can be selectively dissolved, leaving behind whisper-thin, porous, hollow spheres made of tantalum nitride, coated on the inside with platinum nanoparticles and on the outside with iridium or cobalt oxide. This special construction prevents the two reaction steps from taking place in close proximity, improving the charge separation and thus the photocatalytic activity.

About the Author
Dr. Kazunari Domen is a Professor at the University of Tokyo, Deparrtment of Chemical System Engineering. He has been investigating photocatalysis for water splitting to produce hydrogen for more than 30 years. He is now the president of Catalysis Society of Japan.
Author: Kazunari Domen, University of Tokyo (Japan),
Title: Core/Shell Photocatalyst with Spatially Separated Cocatalysts for Efficient Reduction and Oxidation of Water

Angewandte Chemie International Edition, Permalink to the article:

Kazunari Domen | Angewandte Chemie
Further information:

Further reports about: Angewandte Chemie cobalt oxide silicon dioxide water molecule

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>