Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Separate but Together

17.09.2013
Core/shell photocatalyst with spatially separated cocatalysts for more efficient water splitting

Photocatalytic splitting of water uses sunlight to split water into hydrogen and oxygen. It is an environmentally friendly way to obtain hydrogen for fuel cells.



In the journal Angewandte Chemie, Japanese researchers have now introduced a new method for the production of more effective photocatalysts. Their method uses tiny hollow spheres coated with different cocatalysts on the inside and the outside.

In a photocatalytic water splitting reaction, the catalyst, usually a semiconductor, captures photons. Electrons get excited and rise from the valence band to the conduction band. The electronic voids left behind in the valence band are regarded as positively charged “holes”. If the electrons and holes manage to migrate to the surface of the catalyst before the opposite charges recombine, they can be transferred to water molecules and used to reduce the water to make hydrogen or oxidize it to make oxygen.

New catalyst systems are constantly being researched and developed, but their efficiency has always been found to be lacking. Theoretically, catalysts based on tantalum nitride (Ta3N5) should be especially well-suited candidates for photocatalysis with visible light. However, two main problems have hindered their successful use in practice: First, on the surface of the catalyst, the resulting products, oxygen and hydrogen, immediately react to produce water. Second, the charge separation of the electrons and holes formed in the reaction doesn’t quite work correctly as they recombine too quickly.

Cocatalysts are meant to improve efficiency by capturing the electrons or holes and transferring them to the water. Precious metals like platinum can improve the individual step of reduction to hydrogen; metal oxides such as iridium and cobalt oxide catalyze the oxidation to oxygen. However, equipping photocatalysts with both types of cocatalyst has not resulted in any resounding successes.

A team led by Kazunari Domen at the University of Tokyo had a clever idea: what if both cocatalysts were not uniformly distributed over the catalyst, but instead were spatially separated? To achieve this, the researchers developed a simple method for the production of core/shell microparticles. In the first step, they coated silicon dioxide microspheres with platinum nanoparticles and then with tantalum oxide, which was converted to tantalum nitride by reaction with ammonia in the next step.

The spheres were then coated with either iridium or cobalt oxide. The silicon dioxide core can be selectively dissolved, leaving behind whisper-thin, porous, hollow spheres made of tantalum nitride, coated on the inside with platinum nanoparticles and on the outside with iridium or cobalt oxide. This special construction prevents the two reaction steps from taking place in close proximity, improving the charge separation and thus the photocatalytic activity.

About the Author
Dr. Kazunari Domen is a Professor at the University of Tokyo, Deparrtment of Chemical System Engineering. He has been investigating photocatalysis for water splitting to produce hydrogen for more than 30 years. He is now the president of Catalysis Society of Japan.
Author: Kazunari Domen, University of Tokyo (Japan),
http://www.domen.t.u-tokyo.ac.jp/english/index_framepage_E.html
Title: Core/Shell Photocatalyst with Spatially Separated Cocatalysts for Efficient Reduction and Oxidation of Water

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201303693

Kazunari Domen | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

Further reports about: Angewandte Chemie cobalt oxide silicon dioxide water molecule

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>