Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why Sensory Perception Changes When the Brain Rests

06.02.2009
New research by Weizmann Institute scientists and their colleagues helps explain why we don’t experience sights or sounds when there is no input to our sensory organs – even though our sense centers are functioning.

Even when our eyes are closed, the visual centers in our brain are humming with activity. Weizmann Institute scientists and others have shown in the last few years that the magnitude of sense-related activity in a brain that’s disengaged from seeing, touching, etc., is quite similar to that of one exposed to a stimulus.

New research at the Institute has now revealed details of that activity, explaining why, even though our sense centers are working, we don’t experience sights or sounds when there’s nothing coming in through our sensory organs.

The previous studies of Prof. Rafael Malach and research student Yuval Nir of the Neurobiology Department used functional magnetic resonance imaging (fMRI) to measure brain activity in active and resting states. But fMRI is an indirect measurement of brain activity; it can’t catch the nuances of the pulses of electricity that characterize neuron activity.

Together with Prof. Itzhak Fried of the University of California at Los Angeles and a team at the EEG unit of the Tel Aviv Sourasky Medical Center, the researchers found a unique source of direct measurement of electrical activity in the brain: data collected from epilepsy patients who underwent extensive testing, including measurement of neuronal pulses in various parts of their brain, in the course of diagnosis and treatment.

An analysis of this data showed conclusively that electrical activity does indeed take place, even in the absence of stimuli. But the nature of the electrical activity differs if a person is experiencing a sensory event or undergoing its absence. In results that appeared recently in Nature Neuroscience, the scientists showed that during rest, brain activity consists of extremely slow fluctuations, as opposed to the short, quick bursts that typify a response associated with a sensory percept. This difference appears to be the reason we don’t experience hallucinations or hear voices that aren’t there during rest. The resting oscillations appear to be strongest when we sense nothing at all – during dream-free sleep.

The slow fluctuation pattern can be compared to a computer screensaver. Though its function is still unclear, the researchers have a number of hypotheses. One possibility is that neurons, like certain philosophers, must “think” in order to be. Survival, therefore, is dependant on a constant state of activity. Another suggestion is that the minimal level of activity enables a quick start when a stimulus eventually presents itself, something like a getaway car with the engine running. Nir: “In the old approach, the senses are ‘turned on’ by the switch of an outside stimulus. This is giving way to a new paradigm in which the brain is constantly active, and stimuli change and shape that activity.”

Malach: “The use of clinical data enabled us to solve a riddle of basic science in a way that would have been impossible with conventional methods. These findings could, in the future, become the basis of advanced diagnostic techniques.” Such techniques might not necessarily require the cooperation of the patient, allowing them to be used, for instance, on people in a coma or on young children.

Prof. Rafael Malach’s research is supported by the Nella and Leon Benoziyo Center for Neurological Diseases; the Carl and Micaela Einhorn-Dominic Brain Research Institute; Ms. Vera Benedek, Israel; Benjamin and Seema Pulier Charitable Foundation, Inc.; and Ms. Mary Helen Rowen, New York, NY. Prof. Malach is the incumbent of the Barbara and Morris Levinson Professorial Chair in Brain Research.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians, and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials, and developing new strategies for protecting the environment.

Jennifer Manning | Newswise Science News
Further information:
http://www.acwis.org

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>