Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensor gives valuable data for neurological diseases and treatments

20.04.2010
A new biosensor developed at Purdue University can measure whether neurons are performing correctly when communicating with each other, giving researchers a tool to test the effectiveness of new epilepsy or seizure treatments.

Marshall Porterfield, an associate professor of agricultural and biological engineering and biomedical engineering, postdoctoral researcher Eric McLamore, and graduate student Subhashree Mohanty developed the self-referencing glutamate biosensor to measure real-time glutamate flux of neural cells in a living organism. The nanosensor not only measures glutamate around neural cells, it can tell how those cells are releasing or taking up glutamate, a key to those cells' health and activity.

"Before we did this, people were only getting at glutamate indirectly or through huge, invasive probes," said Porterfield, whose research was published in the early online version of the Journal of Neuroscience Methods. "With this sensor, we can 'listen' to glutamate signaling from the cells."

The firing of neurons is involved in every action or movement in a human body. Neurons work electrically, but ultimately communicate with each other through chemical neurotransmitters such as glutamate. One neuron will release glutamate to convey information to the next neuron's cell receptors.

Once the message is delivered, neurons are supposed to reabsorb or clear out the glutamate signal. It is believed that when neurons release too much or too little glutamate and are not able to clear it properly, people are prone to neurological diseases.

Jenna Rickus, an associate professor of agricultural and biological engineering and biomedical engineering who oversaw the study's neurological aspects, said researchers need more information about how neurons work to create more effective treatments for neurological disorders.

"Understanding neurotransmitter dynamics has implications for almost all normal and pathological brain function," Rickus said. "The reason we don't have good information is because we haven't had a good measurement tool before."

Porterfield and McLamore's sensor exploits conductive carbon nanotubes and is only 2 micrometers in diameter, or about 50 times smaller than the diameter of a human hair. They also use an enzyme, called glutamate oxidase, on the end of the probe that reacts with glutamate to create hydrogen peroxide. The carbon nanotubes enhance the conductivity of the hydrogen peroxide, and a computer can calculate the movement of glutamate relative to the cell surface.

The sensor oscillates and samples the concentration activities of glutamate at various positions relative to the neurons in culture. Those measurements at different distances can tell researchers whether the glutamate is flowing back toward the neurons or dissipating in many directions.

Current sensor technology allows for sensing in vitro, but those probes are large and invasive, Porterfield said, and they don't measure the movement of the chemicals.

McLamore said the sensor also is valuable because it is able to hone in on only glutamate using just one probe and custom software that filters out variations in the signals that are read, which removes signal noise due to other compounds.

"There are many compounds present near the neurons which can potentially create noise, but this sensor should be selective for one compound. We filter out all of the background noise," McLamore said. "It's the same thing modern hearing aids do. They're filtering out ambient noises, and that's the same thing you get when you oscillate a biosensor."

The sensor also could be adapted to measure other chemicals by changing the enzyme used on its tip.

Rickus said the sensor's versatility would be valuable for understanding the effects of therapies for epilepsy, Parkinson's disease, damage caused by chemotherapy, memory loss and many other conditions. The sensor will give valuable data on how damaged neurons function and how drugs or therapies affect those cells.

Porterfield said the next step is to make small improvements to the sensor and adapt it to use other enzymes. The Office of Naval Research funded the research.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu

Sources: Marshall Porterfield, 765-494-1190, porterf@purdue.edu
Jenna Rickus, 765-494-1197, rickus@purdue.edu
Eric McLamore, 806-239-9556, emclamor@purdue.edu

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>