Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensor sees nerve action as it happens

24.11.2015

Technique provides first real-time, eagle-eye view of neural activity in mammal brains

Researchers at Duke and Stanford Universities have devised a way to watch the details of neurons at work, pretty much in real time. Every second of every day, the 100 billion neurons in your brain are capable of firing off a burst of electricity called an action potential up to 100 times per second. For neurologists trying to study how this overwhelming amount of activity across an entire brain translates into specific thoughts and behaviors, they need a faster way to watch.


A series of images from a Duke engineering experiment show voltage spreading through a fruitfly neuron over a matter of just 4 milliseconds, a hundred times faster than the blink of an eye. The technology can see impulses as fleeting as 0.2 millisecond -- 2000 times faster than a blink.

Credit: Yiyang Gong, Duke University

Existing techniques for monitoring neurons are too slow or too tightly focused to generate a holistic view. But in a new study, researchers reveal a technique for watching the brain's neurons in action with a time resolution of about 0.2 milliseconds -- a speed just fast enough to capture the action potentials in mammalian brains.

The paper appeared early online in Science on November 19, 2015: https://www.sciencemag.org/content/early/2015/11/18/science.aab0810.abstract.

"We set out to combine a protein that can quickly sense neural voltage potentials with another protein that can amplify its signal output," said Yiyang Gong, assistant professor of biomedical engineering at Duke and first author on the paper. "The resulting increase in sensor speed matches what is needed to read out electrical spikes in the brains of live animals."

Gong did the work as a postdoctoral fellow in the laboratory of Mark Schnitzer, associate professor of biological sciences and applied physics at Stanford, and an investigator of the Howard Hughes Medical Institute. Gong and his colleagues sought out a voltage sensor fast enough to keep up with neurons. After several trials, the group landed on one found in algae, and engineered a version that is both sensitive to voltage activity and responds to the activity very quickly.

The amount of light it puts out, however, wasn't bright enough to be useful in experiments. It needed an amplifier.

To meet this engineering challenge, Gong fused the newly engineered voltage sensor to the brightest fluorescing protein available at the time. He linked the two close enough to interact optically without slowing the system down.

"When the voltage sensing component we engineered detects a voltage potential, it absorbs more light," explained Gong. "And by absorbing more of the bright fluorescent protein's light, the overall fluorescence of the system dims in response to a neuron firing."

The new sensor was delivered to the brains of mice using a virus and incorporated into fruit flies through genetic modification. In both cases, the researchers were able to express the protein in selected neurons and observe voltage activity. They were also able to read voltage movements in different sub-compartments of individual neurons, which is very difficult to do with other techniques.

"Being able to read voltage spikes directly from the brain and also see their specific timing is very helpful in determining how brain activity drives animal behavior," said Gong. "Our hope is that the community will explore those types of questions in more detail using this particular sensor. Already I've received multiple emails from groups interested in trying the technique in their own labs."

###

CITATION: "High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor," Yiyang Gong, Cheng Huang, Jin Zhong Li, Benjamin F. Grewe, Yanping Zhang, Stephan Eismann, Mark J. Schnitzer. Science, November 20, 2015. DOI: 10.1126/science.aab0810

Media Contact

Ken Kingery
ken.kingery@duke.edu
919-660-8414

 @DukeU

http://www.duke.edu 

Ken Kingery | EurekAlert!

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>