Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensitive to Oxygen

04.03.2011
Phosphorescent iridium(III) porphyrin complexes, new tunable oxygen indicators

Monitoring the amount of oxygen in living tissues accurately is a valuable tool in biomedical science, because it enables the elucidation of the course of metabolic processes or the detection of diseases or anomalies.

Metal complexes that absorb and emit light are useful as sensors, and metal complexes of porphyrins and their derivatives are especially good candidates for such applications, as the porphyrin macrocycle can easily be modified.

Sergey M. Borisov and his co-workers at Graz University of Technology (Austria), developed new, strongly phosphorescent porphyrin complexes of iridium(III), which were applied as dyes in advanced optical oxygen-sensing materials and published them in the European Journal of Inorganic Chemistry.

Photophysical properties of porphyrin complexes of metals such as palladium or platinum have been studied before; however, there are fewer studies on iridium complexes, which are more difficult to synthesize. The absorption bands of iridium complexes are broader and are shifted to lower wavelengths in comparison to those of their platinum analogues. This enables them to be excited by visible light. Furthermore, iridium(III) is hexacoordinate, which opens up the added possibility of introducing axial ligands directly on the metal instead of modifying the porphyrin macrocycle, in contrast to the square-planar platinum(II) and palladium(II) analogues. A π-extended iridium(III)–benzoporphyrin and four iridium(III)–octaethylporphyrin complexes with high room-temperature phosphorescence quantum yields of up to 30% were synthesized. Axial ligands were used to change their solubility or to introduce binding groups. In this way, the complexes were rendered soluble in organic solvents, and they were incorporated into polystyrene or other polymers to yield oxygen sensors. In addition, other axial ligands, such as an imidazole ligand bearing a carboxyl group, were used to make the complexes soluble in polar solvents such as ethanol and even in aqueous buffer at physiological pH, which enabled coupling to biomolecules such as proteins, antibodies, or lipids, as demonstrated by coupling to bovine serum albumin.

The importance of these new compounds is their tunable photophysical properties and versatility, as demonstrated by their application as a water-soluble oxygen probe (by staining bovine serum albumin) and a trace oxygen sensor (by coupling to amino-modified silica gel). The obtained sensor is sensitive to small oxygen concentrations and features a highly linear calibration plot. The new dyes are particularly promising as indicators for oxygen sensors with tailor-made sensitivity.

Author: Sergey Borisov, Technische Universität Graz (Austria), http://www.analytchem.tugraz.at/sensors/borisov.php

Title: Strongly Phosphorescent Iridium(III)–Porphyrins—New Oxygen Indicators with Tuneab­le Photophysical Properties and Functionalities

European Journal of Inorganic Chemistry, Permalink to the article: http://dx.doi.org/10.1002/ejic.201100089

Sergey Borisov | Wiley-VCH
Further information:
http://www.wiley.com

More articles from Life Sciences:

nachricht Algae: The final frontier
22.06.2017 | Carnegie Institution for Science

nachricht Flipping the switch to stop tumor development
22.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Hubble captures massive dead disk galaxy that challenges theories of galaxy evolution

22.06.2017 | Physics and Astronomy

New femto-camera with quadrillion fractions of a second resolution

22.06.2017 | Physics and Astronomy

Rice U. chemists create 3-D printed graphene foam

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>