Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sensitive balance in the immune system


Too much of a protein called c-FLIPR can trigger autoimmune diseases

As strange as it may seem, a process called "cellular suicide" is actually crucial for the survival of the entire body. A protein called c-FLIPR plays a key role in controlling this process, which is called "apoptosis".

Inflammed lung tissue with immune cells that have migrated into the lungs. Their nuclei are stained blue. HZI/Pils

Scientists at the Helmholtz Centre for Infection Research (HZI) have described the significance of c-FLIPR for the immune system in more detail: In the presence of an excess of this molecule, mice can fight infectious diseases better, but they develop autoimmune diseases as they get older. The inhibitory effect of c-FLIPR on apoptosis is the underlying cause of both these effects.

Apoptosis is used by cells that are changed by disease or are simply not needed any longer to eliminate themselves before they become a hazard to the body—on a cellular level, death is part of life. Disruption of this process can lead to cancer or immunodeficiencies, but also to autoimmune diseases, in which cells attack their own body.

HZI scientist Prof Ingo Schmitz and his team investigate the regulation of apoptosis in the immune system. In collaboration with researchers of the Otto von Guericke University Magdeburg and the Helmholtz Zentrum München, they elucidated the role of a central protein in this process.

The researchers published their results in "Cell Death & Disease". So-called c-FLIP proteins inhibit signaling cascades that can lead to apoptosis. This is important temporarily in the response to pathogens to ensure that lymphocytes, a type of immune cells, can proliferate sufficiently. Towards the end of the immune response, once the lymphocytes completed their tasks and successfully eliminated the pathogen, c-FLIP is usually degraded. As a result, apoptosis is enabled again, the lymphocytes die and the equilibrium in the immune system is restored.

The HZI researchers then took a closer look at the exact function of a certain variant of the protein, called c-FLIPR. They used mice to investigate what happens if this protein is always present in lymphocytes and other blood cells. Whereas the apoptosis inhibitor caused no anomalies in young mice, the scenario in older mice was quite different: "The composition of the lymphocytes was changed significantly," says Schmitz. "Furthermore the immune cells were strongly activated."

The overactivation is easily apparent in the body. The researchers found immune molecules, called autoantibodies, which attack the body's own tissue in the kidneys and lung. In addition, they detected harmful protein deposits in the kidneys. The changes in the lung tissue are also indicative of the immune system attacking its own body in the presence of too much c-FLIPR. "Immune cells migrate into the lung and attack the lung tissue," says Schmitz. Physicians usually see these symptoms in a human autoimmune disease called systemic lupus erythematosus

The HZI scientists discovered already last year that cells can fight bacterial infections better if c-FLIPR is turned on permanently. This means that inhibiting the suicide of cells has beneficial effects in acute infections, but leads to autoimmune reactions in the long run. "c-FLIPR is important for the balance of the immune system. It might be possible to intervene with suitable therapeutic agents if the equilibrium of the immune system is disrupted," says Schmitz.

Original publication
Frida Ewald, Michaela Annemann, Marina C. Pils, Carlos Plaza-Sirvent, Frauke Neff, Christian Erck, Dirk Reinhold, Ingo Schmitz
Constitutive expression of murine c-FLIPR causes autoimmunity in aged mice
Cell Death & Disease, 2014

The research group "Systems-oriented Immunology and Inflammation Research" studies the molecular processes that sensitize immune cells to the body’s own tissues. A main focus is on the cellular suicide programme apoptosis.

The Helmholtz Centre for Infection Research (HZI)
Scientists at the Helmholtz Centre for Infection Research in Braunschweig, Germany, are engaged in the study of different mechanisms of infection and of the body’s response to infection. Helping to improve the scientific community’s understanding of a given bacterium’s or virus’ pathogenicity is key to developing effective new treatments and vaccines.

Weitere Informationen: - This press release on

Dr. Birgit Manno | Helmholtz-Zentrum

More articles from Life Sciences:

nachricht Flipping molecular attachments amps up activity of CO2 catalyst
06.10.2015 | DOE/Brookhaven National Laboratory

nachricht Safe nanomotors propelled by sugar
06.10.2015 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

Im Focus: High-speed march through a layer of graphene

In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta (USA), scientists of the Laboratory for Attosecond Physics of the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität have made simulations of the processes that happen when a layer of carbon atoms is irradiated with strong laser light.

Electrons hit by strong laser pulses change their location on ultrashort timescales, i.e. within a couple of attoseconds (1 as = 10 to the minus 18 sec). In...

Im Focus: Battery Production: Laser Light instead of Oven-Drying and Vacuum Technology

At the exhibition BATTERY + STORAGE as part of WORLD OF ENERGY SOLUTIONS 2015 in Stuttgart, the Fraunhofer Institutes for Laser Technology ILT and for Ceramic Technologies and Systems IKTS will be showing how laser technology can be used to manufacture batteries both cost- and energy-efficiently.

In the truest sense, it’s all about watts at the Dresden-based Fraunhofer Institute for Ceramic Technologies and Systems IKTS and the Aachen-based Fraunhofer...

Im Focus: New Sinumerik features improve productivity and precision

EMO 2015, Hall 3, Booth E06/F03

  • Drive optimization called automatically by the part program boosts productivity
  • Automatically switching the dynamic values to rapid traverse and interpolation...
All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Graphene teams up with two-dimensional crystals for faster data communications

06.10.2015 | Information Technology

Laser-wielding physicists seize control of atoms' behavior

06.10.2015 | Physics and Astronomy

Flipping molecular attachments amps up activity of CO2 catalyst

06.10.2015 | Life Sciences

More VideoLinks >>>