Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sensitive balance in the immune system


Too much of a protein called c-FLIPR can trigger autoimmune diseases

As strange as it may seem, a process called "cellular suicide" is actually crucial for the survival of the entire body. A protein called c-FLIPR plays a key role in controlling this process, which is called "apoptosis".

Inflammed lung tissue with immune cells that have migrated into the lungs. Their nuclei are stained blue. HZI/Pils

Scientists at the Helmholtz Centre for Infection Research (HZI) have described the significance of c-FLIPR for the immune system in more detail: In the presence of an excess of this molecule, mice can fight infectious diseases better, but they develop autoimmune diseases as they get older. The inhibitory effect of c-FLIPR on apoptosis is the underlying cause of both these effects.

Apoptosis is used by cells that are changed by disease or are simply not needed any longer to eliminate themselves before they become a hazard to the body—on a cellular level, death is part of life. Disruption of this process can lead to cancer or immunodeficiencies, but also to autoimmune diseases, in which cells attack their own body.

HZI scientist Prof Ingo Schmitz and his team investigate the regulation of apoptosis in the immune system. In collaboration with researchers of the Otto von Guericke University Magdeburg and the Helmholtz Zentrum München, they elucidated the role of a central protein in this process.

The researchers published their results in "Cell Death & Disease". So-called c-FLIP proteins inhibit signaling cascades that can lead to apoptosis. This is important temporarily in the response to pathogens to ensure that lymphocytes, a type of immune cells, can proliferate sufficiently. Towards the end of the immune response, once the lymphocytes completed their tasks and successfully eliminated the pathogen, c-FLIP is usually degraded. As a result, apoptosis is enabled again, the lymphocytes die and the equilibrium in the immune system is restored.

The HZI researchers then took a closer look at the exact function of a certain variant of the protein, called c-FLIPR. They used mice to investigate what happens if this protein is always present in lymphocytes and other blood cells. Whereas the apoptosis inhibitor caused no anomalies in young mice, the scenario in older mice was quite different: "The composition of the lymphocytes was changed significantly," says Schmitz. "Furthermore the immune cells were strongly activated."

The overactivation is easily apparent in the body. The researchers found immune molecules, called autoantibodies, which attack the body's own tissue in the kidneys and lung. In addition, they detected harmful protein deposits in the kidneys. The changes in the lung tissue are also indicative of the immune system attacking its own body in the presence of too much c-FLIPR. "Immune cells migrate into the lung and attack the lung tissue," says Schmitz. Physicians usually see these symptoms in a human autoimmune disease called systemic lupus erythematosus

The HZI scientists discovered already last year that cells can fight bacterial infections better if c-FLIPR is turned on permanently. This means that inhibiting the suicide of cells has beneficial effects in acute infections, but leads to autoimmune reactions in the long run. "c-FLIPR is important for the balance of the immune system. It might be possible to intervene with suitable therapeutic agents if the equilibrium of the immune system is disrupted," says Schmitz.

Original publication
Frida Ewald, Michaela Annemann, Marina C. Pils, Carlos Plaza-Sirvent, Frauke Neff, Christian Erck, Dirk Reinhold, Ingo Schmitz
Constitutive expression of murine c-FLIPR causes autoimmunity in aged mice
Cell Death & Disease, 2014

The research group "Systems-oriented Immunology and Inflammation Research" studies the molecular processes that sensitize immune cells to the body’s own tissues. A main focus is on the cellular suicide programme apoptosis.

The Helmholtz Centre for Infection Research (HZI)
Scientists at the Helmholtz Centre for Infection Research in Braunschweig, Germany, are engaged in the study of different mechanisms of infection and of the body’s response to infection. Helping to improve the scientific community’s understanding of a given bacterium’s or virus’ pathogenicity is key to developing effective new treatments and vaccines.

Weitere Informationen: - This press release on

Dr. Birgit Manno | Helmholtz-Zentrum

More articles from Life Sciences:

nachricht First-time reconstruction of infectious bat influenza viruses
25.10.2016 | Universitätsklinikum Freiburg

nachricht The nanostructured cloak of invisibility
25.10.2016 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The nanostructured cloak of invisibility

25.10.2016 | Life Sciences

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

More VideoLinks >>>