Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Sensing skin’ could monitor the health of concrete infrastructure continually and inexpensively

30.06.2011
In 2009, the American Society of Civil Engineers (ASCE) assigned the grade “D” to the overall quality of infrastructure in the U.S. and said that ongoing evaluation and maintenance of structures was one of five key areas necessary for improving that grade.

Since that time, federal stimulus funds have made it possible for communities to repair some infrastructure, but the field of high-tech, affordable methods for the continual monitoring of structures remains in its infancy. Instead, most evaluation of bridges, dams, schools and other structures is still done by visual inspection, which is slow, expensive, cumbersome and in some cases, dangerous.

Civil engineers at MIT working with physicists at the University of Potsdam in Germany recently proposed a new method for the electronic, continual monitoring of structures. In papers appearing in Structural Control Health Monitoring (December 2010) and the Journal of Materials Chemistry (April 2011) the researchers describe how a flexible skin-like fabric with electrical properties could be adhered to areas of structures where cracks are likely to appear, such as the underside of a bridge, and detect cracks when they occur.

Installing this “sensing skin” would be as simple as gluing it to the surface of a structure in the length and width required. The rectangular patches in the skin could be prepared in a matrix appropriate for detecting the type of crack likely to form in a particular part of a structure. A sensing skin formed of diagonal square patches (3.25 inches by 3.25 inches, for instance) would be best at detecting cracks caused by shear, the movement in different directions of stacked layers. Horizontal patches would best detect the cracks caused when a horizontal beam sags. The largest patch tested using the prototype reached up to 8 inches by 4 inches in size.

The formation of a crack would cause a tiny movement in the concrete under the patch, which would cause a change in the capacitance (the energy it is storing) of the sensing skin. Once daily, a computer system attached to the sensing skin would send a current to measure the capacitance of each patch and detect any difference among neighboring patches. In this way, it would detect the flaw within 24 hours and know its exact location, a task that has proved difficult for other types of sensors proposed or already in use, which tend to rely on detecting global changes in the entire structure using a few strategically placed sensors.

“The sensing skin has the remarkable advantage of being able to both sense a change in the general performance of the structure and also know the damage location at a pre-defined level of precision,” said Simon Laflamme Ph.D. ’11, who did this research as a graduate student in the MIT Department of Civil and Environmental Engineering (CEE). “Such automation in the health monitoring process could result in great cost savings and more sustainable infrastructures, as their lifespan would be significantly increased as a result of timely repairs and reduced number of inspections.” Laflamme, worked with Professor Jerome Connor of MIT CEE and University of Potsdam researcher Guggi Kofod and graduate student Matthias Kollosche.

The researchers originally tested their idea using a commercially available, inexpensive stretchy silicon fabric with silver electrodes. While this worked in some of the lab experiments performed on both small and large concrete beams under stress, the material showed limitations in its installation because it was too thin and flexible for this use. The researchers have now developed a prototype of a sensing skin made of soft stretchy thermoplastic elastomer mixed with titanium dioxide that is highly sensitive to cracks, with painted patches of black carbon that measure the change in the electrical charge of the skin. A patent for the sensing method was filed in March 2010.

“Many of the types of infrastructures graded by the ASCE are made of concrete and could benefit from a new monitoring system like the sensing skin, including bridges which received a C grade, and dams and schools, which earned Ds,” said Connor. “The safety of civil infrastructures would be greatly improved by having more detailed real-time information on structural health.”

The work of Kofod and Kollosche was funded by the German Ministry of Education and Research.

Denise Brehm | EurekAlert!
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>