Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Sensing skin’ could monitor the health of concrete infrastructure continually and inexpensively

30.06.2011
In 2009, the American Society of Civil Engineers (ASCE) assigned the grade “D” to the overall quality of infrastructure in the U.S. and said that ongoing evaluation and maintenance of structures was one of five key areas necessary for improving that grade.

Since that time, federal stimulus funds have made it possible for communities to repair some infrastructure, but the field of high-tech, affordable methods for the continual monitoring of structures remains in its infancy. Instead, most evaluation of bridges, dams, schools and other structures is still done by visual inspection, which is slow, expensive, cumbersome and in some cases, dangerous.

Civil engineers at MIT working with physicists at the University of Potsdam in Germany recently proposed a new method for the electronic, continual monitoring of structures. In papers appearing in Structural Control Health Monitoring (December 2010) and the Journal of Materials Chemistry (April 2011) the researchers describe how a flexible skin-like fabric with electrical properties could be adhered to areas of structures where cracks are likely to appear, such as the underside of a bridge, and detect cracks when they occur.

Installing this “sensing skin” would be as simple as gluing it to the surface of a structure in the length and width required. The rectangular patches in the skin could be prepared in a matrix appropriate for detecting the type of crack likely to form in a particular part of a structure. A sensing skin formed of diagonal square patches (3.25 inches by 3.25 inches, for instance) would be best at detecting cracks caused by shear, the movement in different directions of stacked layers. Horizontal patches would best detect the cracks caused when a horizontal beam sags. The largest patch tested using the prototype reached up to 8 inches by 4 inches in size.

The formation of a crack would cause a tiny movement in the concrete under the patch, which would cause a change in the capacitance (the energy it is storing) of the sensing skin. Once daily, a computer system attached to the sensing skin would send a current to measure the capacitance of each patch and detect any difference among neighboring patches. In this way, it would detect the flaw within 24 hours and know its exact location, a task that has proved difficult for other types of sensors proposed or already in use, which tend to rely on detecting global changes in the entire structure using a few strategically placed sensors.

“The sensing skin has the remarkable advantage of being able to both sense a change in the general performance of the structure and also know the damage location at a pre-defined level of precision,” said Simon Laflamme Ph.D. ’11, who did this research as a graduate student in the MIT Department of Civil and Environmental Engineering (CEE). “Such automation in the health monitoring process could result in great cost savings and more sustainable infrastructures, as their lifespan would be significantly increased as a result of timely repairs and reduced number of inspections.” Laflamme, worked with Professor Jerome Connor of MIT CEE and University of Potsdam researcher Guggi Kofod and graduate student Matthias Kollosche.

The researchers originally tested their idea using a commercially available, inexpensive stretchy silicon fabric with silver electrodes. While this worked in some of the lab experiments performed on both small and large concrete beams under stress, the material showed limitations in its installation because it was too thin and flexible for this use. The researchers have now developed a prototype of a sensing skin made of soft stretchy thermoplastic elastomer mixed with titanium dioxide that is highly sensitive to cracks, with painted patches of black carbon that measure the change in the electrical charge of the skin. A patent for the sensing method was filed in March 2010.

“Many of the types of infrastructures graded by the ASCE are made of concrete and could benefit from a new monitoring system like the sensing skin, including bridges which received a C grade, and dams and schools, which earned Ds,” said Connor. “The safety of civil infrastructures would be greatly improved by having more detailed real-time information on structural health.”

The work of Kofod and Kollosche was funded by the German Ministry of Education and Research.

Denise Brehm | EurekAlert!
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>