Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensing Gravity with Acid: Scientists Discover a Role for Protons in Neurotransmission

26.03.2014

While probing how organisms sense gravity and acceleration, scientists at the Marine Biological Laboratory (MBL) and the University of Utah uncovered evidence that acid (proton concentration) plays a key role in communication between neurons. The surprising discovery is reported this week in Proceedings of the National Academy of Sciences.

The team, led by the late MBL senior scientist Stephen M. Highstein, discovered that sensory cells in the inner ear continuously transmit information on orientation of the head relative to gravity and low-frequency motion to the brain using protons as the key synaptic signaling molecule. (The synapse is the structure that allows one neuron to communicate with another by passing a chemical or electrical signal between them.)


The toadfish (Opsanus tau) is a model organism used by the Highstein lab to study hearing, balance, and synaptic transmission. Credit: Wikimedia

“This addresses how we sense gravity and other low-frequency inertial stimuli, like acceleration of an automobile or roll of an airplane,” says co-author Richard Rabbitt, a professor at University of Utah and adjunct faculty member in the MBL’s Program in Sensory Physiology and Behavior.

“These are very long-lasting signals requiring a a synapse that does not fatigue or lose sensitivity over time. Use of protons to acidify the space between cells and transmit information from one cell to another could explain how the inner ear is able to sense tonic signals, such as gravity, in a robust and energy efficient way.”

The team found that this novel mode of neurotransmission between the sensory cells (type 1 vestibular hair cells) and their target afferent neurons (calyx nerve terminals), which send signals to the brain, is continuous or nonquantal.

This nonquantal transmission is unusual and, for low-frequency stimuli like gravity, is more energy efficient than traditional synapses in which chemical neurotransmitters are packaged in vesicles and released quantally.

The calyx nerve terminal has a ball-in-socket shape that envelopes the sensory hair cell and helps to capture protons exiting the cell. “The inner-ear vestibular system is the only place where this particular type of synapse is present,” Rabbitt says. “But the fact that protons are playing a key role here suggests they are likely to act as important signaling molecules in other synapses as well.”

Previously, Erik Jorgensen of University of Utah (who recently received a Lillie Research Innovation Award from the MBL and the University of Chicago) and colleagues discovered that protons act as signaling molecules between muscle cells in the worm C. elegans and play an important role in muscle contraction. The present paper is the first to demonstrate that protons also act directly as a nonquantal chemical neurotransmitter in concert with classical neurotransmission mechanisms. The discovery suggests that similar intercellular proton signaling mechanisms might be at play in the central nervous system.

Stephen Highstein, who died in January 2014, was associate director of the MBL’s Program in Sensory Physiology and Behavior. Mary Anne Mann, a research associate in the program, also participated in this research, as did Gay Holstein of Mt. Sinai School of Medicine.

Citation:

Highstein SM, Holstein GR, Mann MA, and Rabbitt RD (2014) Evidence that protons act as neurotransmitters at vestibular hair cell-calyx afferent synapses. PNAS doi/10.1073/pnas.1319561111.

—###—


The Marine Biological Laboratory (MBL) is dedicated to scientific discovery and improving the human condition through research and education in biology, biomedicine, and environmental science. Founded in Woods Hole, Massachusetts, in 1888, the MBL is a private, nonprofit institution and an affiliate of the University of Chicago.

Diana Kenney | EurekAlert!

Further reports about: MBL Neurotransmission Physiology gravity mechanisms neurotransmitters protons sensory stimuli synapses

More articles from Life Sciences:

nachricht Novel 'repair system' discovered in algae may yield new tools for biotechnology
29.07.2016 | Boyce Thompson Institute

nachricht Molecular troublemakers instead of antibiotics?
29.07.2016 | Christian-Albrechts-Universität zu Kiel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

 
Latest News

Vortex laser offers hope for Moore's Law

29.07.2016 | Power and Electrical Engineering

Novel 'repair system' discovered in algae may yield new tools for biotechnology

29.07.2016 | Life Sciences

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>