Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sensing Gravity with Acid: Scientists Discover a Role for Protons in Neurotransmission


While probing how organisms sense gravity and acceleration, scientists at the Marine Biological Laboratory (MBL) and the University of Utah uncovered evidence that acid (proton concentration) plays a key role in communication between neurons. The surprising discovery is reported this week in Proceedings of the National Academy of Sciences.

The team, led by the late MBL senior scientist Stephen M. Highstein, discovered that sensory cells in the inner ear continuously transmit information on orientation of the head relative to gravity and low-frequency motion to the brain using protons as the key synaptic signaling molecule. (The synapse is the structure that allows one neuron to communicate with another by passing a chemical or electrical signal between them.)

The toadfish (Opsanus tau) is a model organism used by the Highstein lab to study hearing, balance, and synaptic transmission. Credit: Wikimedia

“This addresses how we sense gravity and other low-frequency inertial stimuli, like acceleration of an automobile or roll of an airplane,” says co-author Richard Rabbitt, a professor at University of Utah and adjunct faculty member in the MBL’s Program in Sensory Physiology and Behavior.

“These are very long-lasting signals requiring a a synapse that does not fatigue or lose sensitivity over time. Use of protons to acidify the space between cells and transmit information from one cell to another could explain how the inner ear is able to sense tonic signals, such as gravity, in a robust and energy efficient way.”

The team found that this novel mode of neurotransmission between the sensory cells (type 1 vestibular hair cells) and their target afferent neurons (calyx nerve terminals), which send signals to the brain, is continuous or nonquantal.

This nonquantal transmission is unusual and, for low-frequency stimuli like gravity, is more energy efficient than traditional synapses in which chemical neurotransmitters are packaged in vesicles and released quantally.

The calyx nerve terminal has a ball-in-socket shape that envelopes the sensory hair cell and helps to capture protons exiting the cell. “The inner-ear vestibular system is the only place where this particular type of synapse is present,” Rabbitt says. “But the fact that protons are playing a key role here suggests they are likely to act as important signaling molecules in other synapses as well.”

Previously, Erik Jorgensen of University of Utah (who recently received a Lillie Research Innovation Award from the MBL and the University of Chicago) and colleagues discovered that protons act as signaling molecules between muscle cells in the worm C. elegans and play an important role in muscle contraction. The present paper is the first to demonstrate that protons also act directly as a nonquantal chemical neurotransmitter in concert with classical neurotransmission mechanisms. The discovery suggests that similar intercellular proton signaling mechanisms might be at play in the central nervous system.

Stephen Highstein, who died in January 2014, was associate director of the MBL’s Program in Sensory Physiology and Behavior. Mary Anne Mann, a research associate in the program, also participated in this research, as did Gay Holstein of Mt. Sinai School of Medicine.


Highstein SM, Holstein GR, Mann MA, and Rabbitt RD (2014) Evidence that protons act as neurotransmitters at vestibular hair cell-calyx afferent synapses. PNAS doi/10.1073/pnas.1319561111.


The Marine Biological Laboratory (MBL) is dedicated to scientific discovery and improving the human condition through research and education in biology, biomedicine, and environmental science. Founded in Woods Hole, Massachusetts, in 1888, the MBL is a private, nonprofit institution and an affiliate of the University of Chicago.

Diana Kenney | EurekAlert!

Further reports about: MBL Neurotransmission Physiology gravity mechanisms neurotransmitters protons sensory stimuli synapses

More articles from Life Sciences:

nachricht Molecular trigger for Cerebral Cavernous Malformation identified
26.11.2015 | EMBO - excellence in life sciences

nachricht Peering into cell structures where neurodiseases emerge
26.11.2015 | University of Delaware

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Using sphere packing models to explain the structure of forests

26.11.2015 | Ecology, The Environment and Conservation

Dimensionality transition in a newly created material

26.11.2015 | Materials Sciences

Revealing glacier flow with animated satellite images

26.11.2015 | Earth Sciences

More VideoLinks >>>