Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sense of attraction

20.07.2009
Researchers identify a population of olfactory sensory neurons that is responsible for zebrafish attraction towards amino acids

Many olfactory cues pervade the aquatic environment of fish. These cues stimulate various important behaviors, such as escape from predators, or attraction towards food sources or potential mates.

Amino acids are the building blocks of proteins, and are therefore key nutrients in the diet of various animal species, including the zebrafish. Now, a group of scientists led by Yoshihiro Yoshihara and Tetsuya Koide at the RIKEN Brain Science Institute in Wako has elucidated which neurons are responsible for carrying olfactory information about amino acids in the aquatic environment from the nose to the brain of zebrafish. They found that the activity of these neurons is required to elicit zebrafish attraction towards amino acids in their environment1.

Olfactory sensory neurons (OSNs) project from the nose to the olfactory bulb, which is the first relay station for olfactory information in the brain. Each OSN expresses only one type of odorant receptor and responds to a particular set of closely related odors. The OSNs that express the same odorant receptor send their axons together to a specific part of the olfactory bulb.

Yoshihara and colleagues used genetic approaches to express a fluorescent protein in various populations of OSNs. They found that only one of these populations projected to the lateral part of the olfactory bulb, which is known to fire in response to amino acid signals.

When hungry zebrafish were placed into a tank of water with amino acids pumped into one corner, the fish tended to spend more time in the portion of the tank near the amino acids. This suggests that zebrafish are attracted towards the amino acids as a potential source of food. When the researchers blocked synaptic transmission in the population of OSNs that projected to the lateral olfactory bulb, this blocked the so-called ‘attractive behavior’ of the zebrafish towards the amino acids. Blocking synaptic transmission in other populations of OSNs had no effect on this behavior, but did reduce attractive responses of zebrafish to a putative social pheromone in the environment.

According to Yoshihara, “a combination of genetic, anatomical, and behavioral approaches enabled us to provide a direct functional link between different odor inputs and distinct behavioral outputs through segregated olfactory neural circuits from the nose to the brain.” Using similar approaches, Yoshihara says that he and his colleagues “are now investigating neural circuit mechanisms underlying other olfactory behaviors such as escape from predators and memory of mates or related individuals.”

Reference

1. Koide, T., Miyasaka, N., Morimoto, K., Asakawa, K., Urasaki, A., Kawakami, K. & Yoshihara, Y. Olfactory neural circuitry for attraction to amino acids revealed by transposon-mediated gene trap approach in zebrafish. Proceedings of the National Academy of Sciences USA, published online 3 June 2009 (doi: 10.1073/pnas.0900470106).

The corresponding author for this highlight is based at the RIKEN Laboratory for Neurobiology of Synapse

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/751/
http://www.rikenresearch.riken.jp/research/751/image_2209.html
http://www.researchsea.com

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>