Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-driving robots collect water samples to create snapshots of ocean microbes

08.03.2018

For the first time, scientists from the University of Hawai'i at Mānoa (UH Mānoa) and the Monterey Bay Aquarium Research Institute (MBARI) will deploy a small fleet of long-range autonomous underwater vehicles (LRAUVs) that have the ability to collect and archive seawater samples automatically. These new robots will allow researchers to track and study ocean microbes in unprecedented detail.

Ocean microbes produce at least fifty percent of the oxygen in our atmosphere while removing large amounts of carbon dioxide. They also form the foundation of marine food webs, including those that support global ocean fisheries. Edward DeLong and David Karl, oceanography professors in the UH Mānoa School of Ocean and Earth Science and Technology (SOEST) have been studying these microbes for decades.


A long-range autonomous underwater vehicle carrying an environmental sample processor cruises beneath the surface during field trials in Hawaii.

Image courtesy of Elisha Wood-Charlson, University of Hawaii

Usage Restrictions. Image may only be used in association with a story about this research.

For this project, they and their teams are collaborating with engineers from MBARI to test new ways of adaptively sampling oceanographic features such as open-ocean eddies, swirling masses of water that move slowly across the Pacific Ocean, which can have large effects on ocean microbes.

In late February 2018, MBARI engineers completed the construction and testing of three new LRAUVs in collaboration with UH Mānoa scientists, and delivered them last week for their first deployment in Hawaiian waters. As the LRAUVs move through the ocean, they collect information about water temperature, chemistry, and chlorophyll (an indicator of microscopic algae) and send this data to scientists on shore or on a nearby ship.

Additionally, a unique aspect of these AUVs is an integrated Environmental Sample Processor (ESP), a miniature robotic laboratory that collects and preserves seawater samples at sea, allowing researchers to capture a snapshot of the organisms' genetic material and proteins.

MBARI has been developing ESPs for about 15 years. The first instruments were about the size of a 55-gallon drum. These latest ESPs, the third generation, are eight to ten inches in diameter--one-tenth the original size--and were designed specifically to fit inside an LRAUV.

Jim Birch, MBARI's lead engineer on the ESP project commented, "When we first talked about putting an ESP in an AUV, I thought to myself 'this is never going to happen.' But now I really think this is going to transform oceanography by giving us a persistent presence in the ocean--a presence that doesn't require a boat, can operate in any weather condition, and can stay within the same water mass as it drifts around the open ocean."

With its surveying ability, the LRAUV allows scientists to discover, track, and sample open-ocean eddies, which can be over 100 kilometers (62 miles) across and last for months. When these eddies spin counterclockwise they bring water from the depths up toward the surface. This water often carries nutrients that microscopic algae (phytoplankton) need to survive.

"The new LRAUVs can transit for over 600 miles, and use their own 'eyes and ears' to detect important oceanographic events like phytoplankton blooms," DeLong explained. "These new underwater drones will greatly extend our reach to study remote areas, and also will allow us to sample and study oceanographic events and features we can see by remote satellite imaging, even when ships are not available."

An expeditionary cruise aboard the Schmidt Ocean Institute's (SOI) research vessel Falkor leaves on March 10 for open-ocean sea trials of MBARI's newly-designed LRAUVs. During this cruise, the researchers will locate an eddy using satellite data and then deploy the LRAUVs to survey the feature and collect water samples. When the robots return to the surface and are recovered, UH Mānoa researchers will extract DNA from the filters. This information will provide unique insight into the eddy's duration, stability, and influence on the ocean systems; and will improve current ocean models, which are critical for developing expectations on the health of future oceans.

"Although this fleet of AUVs will never replace our need for a capable research vessel, it will provide much needed access to the sea and the collection of novel data sets that would not otherwise be possible," said Karl.

###

This research is supported by the Simons Foundation, the National Science Foundation, the Schmidt Ocean Institute, the David and Lucile Packard Foundation, and the State of Hawai'i.

Media Contact

Kim Fulton-Bennett
kfb@mbari.org
831-775-1835

 @MBARI_news

http://www.mbari.org 

Kim Fulton-Bennett | EurekAlert!
Further information:
https://www.mbari.org/long-range-auv-esp/

Further reports about: Bay Aquarium Research MBARI microbes microscopic algae vessel

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>