Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-assembled nanostructures hit their target

23.09.2016

A biocompatible nanomaterial that can be controlled with light finds a use in gene delivery.

A tiny therapeutic delivery system that can control the body’s ability to manufacture proteins has been developed by Saudi Arabia's King Abdullah University of Science and Technology (KAUST) researchers [1].


The self-assembled biocompatible nanomaterial delivers the miRNA into the cell and then releases it when struck by light. © 2016 KAUST

Genes contain the instructions for manufacturing the proteins that make up our body. Genetic information is translated into the proteins needed to build living cells through a transcription process in which DNA’s genetic code is copied into a large molecule known as messenger RNA (mRNA).

This transcription process can be altered by introducing short double-strands of RNA, referred to as small interfering RNA (siRNA), which binds to the mRNA and inhibits the expression of particular genes. Harnessing this RNA interference for therapeutic applications is difficult and requires a material that can protect the siRNA as it travels through the bloodstream, helping it to penetrate the cell’s outer membrane and deliver it to its target location.

“Delivery of RNA is very tricky as it can be readily digested by cells. Better vehicles are needed so more RNA can be delivered in order to edit genes,” says Niveen Khashab from the KAUST Smart Hybrid Materials Laboratory.

Khashab and her colleagues have now demonstrated biocompatible nanostructures for delivering siRNA and efficiently silencing genes1. They combined the macromolecule histidine-capped-9,10-dialkoxy-anthracene (HDA) and siRNA in water. They observed the self-assembly of spherical nanoparticles when the water was slightly acidic, but not when it was pH neutral.

Khashab explains that these nanospheres are created by the electrostatic interaction between the positively charged HDA and negatively charged RNA, and then the two long arms of the HDA supramolecular wrap around the siRNA to protect it.

“Our organic linker is able to interact with genetic materials by hydrogen bonds and form a delivery vehicle,” explains Khashab. “The approach is scalable and creates reproducible amounts of encapsulated RNA; it is also biocompatible and safe.”

The nanoparticles could also be activated with visible light. When irradiated by green radiation while in the presence of an acidic fluorescent compound, known as eosin, the sphere disassembles and releases the siRNA.

The team showed the effectiveness of the nanoparticle for drug delivery on B-cell lymphoma 2, an mRNA molecule that creates proteins for regulating cell death. They showed that their nanostructures enhance the gene-silencing efficacy and led to gene knockdown of more than 90 percent after exposure to visible-light.

“The next step is to tweak the design to deliver other cargo molecules such as protein and improve the light response to higher wavelength in the near infrared,” says Khashab.

Associated links

Journal information

[1] Patil, S. P., Moosa, B. A., Alsaiari, S., Alamoudi, K., Alshamsan, A., et al. Supramolecular self-assembly of histidine-capped-dialkoxy-anthracene: A visible-light-triggered platform for facile siRNA delivery. Chemistry - A European Journal advance online publication, 28 July 2016 (doi: 10.1002/chem.201601442)

Michelle D'Antoni | Research SEA
Further information:
http://www.researchsea.com

Further reports about: Nanoparticles RNA biocompatible deliver genes mRNA nanostructures proteins siRNA transcription process

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>