Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Self-assembled nanostructures hit their target


A biocompatible nanomaterial that can be controlled with light finds a use in gene delivery.

A tiny therapeutic delivery system that can control the body’s ability to manufacture proteins has been developed by Saudi Arabia's King Abdullah University of Science and Technology (KAUST) researchers [1].

The self-assembled biocompatible nanomaterial delivers the miRNA into the cell and then releases it when struck by light. © 2016 KAUST

Genes contain the instructions for manufacturing the proteins that make up our body. Genetic information is translated into the proteins needed to build living cells through a transcription process in which DNA’s genetic code is copied into a large molecule known as messenger RNA (mRNA).

This transcription process can be altered by introducing short double-strands of RNA, referred to as small interfering RNA (siRNA), which binds to the mRNA and inhibits the expression of particular genes. Harnessing this RNA interference for therapeutic applications is difficult and requires a material that can protect the siRNA as it travels through the bloodstream, helping it to penetrate the cell’s outer membrane and deliver it to its target location.

“Delivery of RNA is very tricky as it can be readily digested by cells. Better vehicles are needed so more RNA can be delivered in order to edit genes,” says Niveen Khashab from the KAUST Smart Hybrid Materials Laboratory.

Khashab and her colleagues have now demonstrated biocompatible nanostructures for delivering siRNA and efficiently silencing genes1. They combined the macromolecule histidine-capped-9,10-dialkoxy-anthracene (HDA) and siRNA in water. They observed the self-assembly of spherical nanoparticles when the water was slightly acidic, but not when it was pH neutral.

Khashab explains that these nanospheres are created by the electrostatic interaction between the positively charged HDA and negatively charged RNA, and then the two long arms of the HDA supramolecular wrap around the siRNA to protect it.

“Our organic linker is able to interact with genetic materials by hydrogen bonds and form a delivery vehicle,” explains Khashab. “The approach is scalable and creates reproducible amounts of encapsulated RNA; it is also biocompatible and safe.”

The nanoparticles could also be activated with visible light. When irradiated by green radiation while in the presence of an acidic fluorescent compound, known as eosin, the sphere disassembles and releases the siRNA.

The team showed the effectiveness of the nanoparticle for drug delivery on B-cell lymphoma 2, an mRNA molecule that creates proteins for regulating cell death. They showed that their nanostructures enhance the gene-silencing efficacy and led to gene knockdown of more than 90 percent after exposure to visible-light.

“The next step is to tweak the design to deliver other cargo molecules such as protein and improve the light response to higher wavelength in the near infrared,” says Khashab.

Associated links

Journal information

[1] Patil, S. P., Moosa, B. A., Alsaiari, S., Alamoudi, K., Alshamsan, A., et al. Supramolecular self-assembly of histidine-capped-dialkoxy-anthracene: A visible-light-triggered platform for facile siRNA delivery. Chemistry - A European Journal advance online publication, 28 July 2016 (doi: 10.1002/chem.201601442)

Michelle D'Antoni | Research SEA
Further information:

Further reports about: Nanoparticles RNA biocompatible deliver genes mRNA nanostructures proteins siRNA transcription process

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>