Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Selectively Manipulating protein modifications

11.03.2013
Protein activity is strictly regulated. Incorrect or poor protein regulation can lead to uncontrolled growth and thus cancer or chronic inflammation.

Members of the Institute of Veterinary Biochemistry and Molecular Biology from the University of Zurich have identified enzymes that can regulate the activity of medically important proteins. Their discovery enables these proteins to be manipulated very selectively, opening up new treatment methods for inflammations and cancer.

For a healthy organism, it is crucial for proteins to be active or inactive at the right time. The corresponding regulation is often based on a chemical modification of the protein structure: Enzymes attach small molecules to particular sites on a protein or remove them, thereby activating or deactivating the protein. Members of the Institute of Veterinary Biochemistry and Molecular Biology from the University of Zurich in collaboration with other Institutes have now discovered how the inactivation of a protein, which is important for medicine, can be reversed.

New group of ADP-ribosylhydrolases identified

An important protein modification is ADP-ribosylation, which is involved in certain types of breast cancer, cellular stress reactions and gene regulation. So-called ADP-ribosyltransferases attach the ADP ribose molecule to proteins, thereby altering their function. In recent years, many ADP-ribosyltransferases have been discovered that can convey single or several ADP-riboses to different proteins. Enzymes that can remove these riboses again, however, are less well known. Professor Michael Hottiger’s team of researchers has now identified a new group of such ADP-ribosylhydrolases. The scientists discovered that a so-called macrodomain is responsible for removing the ADP-riboses in human proteins, but also in the bacterium Archaeoglobus fulgidus.

“We therefore assume that the reversal of the modification takes place in a similar way in different species,” explains Michael Hottiger.

Biomedically relevant: inactivation of the modified enzyme GSK3ß

The researchers also prove that ADP-ribosylhydrolases can remove the ADP-ribose of the intensively studied enzyme GSK3ß, which regulates the synthesis of storage substances and is important in the progression of various diseases. ADP-ribosylation deactivates GSK3ß, which can be reversed again by the newly identified enzyme. “Our discovery enables ADP-ribose modification to be manipulated and tested selectively, and new treatment methods developed for diseases such as inflammations or cancer,” concludes Michael Hottiger.

Literature:

Florian Rosenthal, Karla L.H. Feijs, Emilie Frugier, Mario Bonalli, Alexandra H. Forst, Ralph Imhof, Hans C. Winkler, David Fischer, Amedeo Caflisch, Paul O. Hassa, Bernhard Lüscher and Michael Hottiger. Macrodomain-containing proteins are novel mono-ADP-ribosylhydrolases. Nature Structural & Molecular Biology. March 10, 2013. Doi 10.1038/nsmb.2521

Contacts:

Prof. Michael O. Hottiger
Institute of Veterinary Biochemistry and Molecular Biology
University of Zurich
Tel. +41 44 635 54 74
E-Mail: hottiger@vetbio.uzh.ch

Beat Müller | Universität Zürich
Further information:
http://www.uzh.ch

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>