Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seemingly suicidal stunt is normal rite of passage for immune cells

22.10.2008
Researchers have shown that self-induced breaks in the DNA of immune cells known as lymphocytes activate genes that cause the cells to travel from where they're made to where they help the body fight invaders.

Scientists have known for two decades or more that lymphocytes can break their own DNA in this fashion, creating splits in both of the two strands. However, the new finding is the first to link such serious damage to activation of genes not directly involved in the cells' attempts to either fix the harm or self-destruct to stop themselves from becoming cancerous.

When genes are activated is critical to the ability of cells to take on specialized roles in the body, and the finding, published online in Nature, left researchers wondering if other developmental pathways in different cell types are also triggered by DNA damage.

"It's also interesting to note that the cell sees the genetic material of some invaders, such as DNA viruses, as damaged DNA," says senior author Barry Sleckman, M.D., Ph.D, director of the Division of Laboratory and Genomic Medicine and an expert in DNA repair. "Could pathogens be taking advantage of these pathways outside of the previously recognized responses to DNA damage? We don't know yet."

The finding immediately improved scientists' understanding of ataxia telangiectasia, a rare genetic disorder that, among other symptoms, can weaken the immune system. Patients with the disorder have a mutation in a gene, ATM, that normally helps the cell sense DNA damage.

"This explains why the lymphocyte counts in these patients drop so sharply," Sleckman says. "Not only is the cell's ability to repair DNA damage slowed down, the lymphocytes can't activate the genes that get them to where they need to be."

Cells have built-in safeguards that regularly look for DNA damage. They can then repair it, or if that's not possible, push the cell to self-destruct. Both mechanisms help prevent DNA damage from turning a cell cancerous. For years, scientists assumed that a cell would view a break in both strands of DNA as serious damage and commit to self-destruction.

To their surprise, immunologists discovered two decades ago that breaking DNA was the source of one of the immune system's great strengths. Human DNA contains only 30,000 human genes, but the immune system makes proteins known as antibodies that recognize billions of different foreign substances. Immunologists showed that this was because lymphocytes create double-strand DNA breaks that allowed them to splice together their genetic materials in new ways. Material created from the new genetic combinations is used to generate antibodies and other defensive mechanisms that help the body defend itself against a much greater variety of invaders.

Sleckman wanted to examine the implications of DNA breaks in lymphocytes. In a cell line developed in his lab, researchers induced double-stranded breaks in lymphocyte DNA using the same enzymes the cells normally use to create the breaks. They then analyzed the genes activated as a result.

As expected, the breaks turned on two groups of genes: one, headed by the p53 protein, pushes the cell toward self-destruction; the other, headed by the NFKappa-B proteins, pushes for survival of the cell and repair of the damaged DNA. These groups of genes are normally activated in any cell that experiences DNA damage.

But Sleckman and his colleagues also found several lymphocyte-specific genes activated by the breaks.

"Several of these genes are involved in the migration and homing of lymphocytes," says Sleckman. "Lymphocytes are made in the bone marrow and the thymus, and they have to move to other niches, including the lymph glands, to do their work."

In addition to the young lymphocyte, scientists are aware of other instances where DNA is normally and regularly broken, such as the replication of DNA during cell division or the creation of reproductive cells like the sperm and the egg. Ionizing radiation and chemotherapy drugs also can cause similar damage to DNA. Finally, DNA strands from infectious agents that enter the cell can mimic damaged host DNA.

"It's entirely possible that some of these breaks are activating genetic mechanisms that are unrelated to DNA repair or cell survival, like the mechanisms we identified in lymphocytes," says Sleckman. "Understanding the broader scope of the cells' responses to DNA damage could potentially be important in a wide variety of contexts."

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>