Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing is a matter of experience

22.05.2014

Neuroscientists of Jena University (Germany) discover adaptation mechanisms of the brain when perceiving letters of the alphabet

The headlights – two eyes, the radiator cowling – a smiling mouth: This is how our brain sometimes creates a face out of a car front. The same happens with other objects: in house facades, trees or stones – a “human face” can often be detected as well.


Neuroscientists of Jena University (Germany) discover adaptation mechanisms of the brain when perceiving letters of the alphabet. Photo: Jan-Peter Kasper/FSU

Prof. Dr. Gyula Kovács from Friedrich Schiller University Jena (Germany) knows the reason why. “Faces are of tremendous importance for human beings,” the neuroscientist explains. That’s why in the course of the evolution our visual perception has specialized in the recognition of faces in particular. “This sometimes even goes as far as us recognizing faces when there are none at all.”

Until now the researchers assumed that this phenomenon is an exception that can only be applied to faces. But, as Prof. Kovács and his colleague Mareike Grotheer were able to point out in a new study: these distinct adaptation mechanisms are not only restricted to the perception of faces. In the “The Journal of Neuroscience“ the Jena researchers have proved that the effect can also occur in the perception of letters. (DOI: 10.1523/JNEUROSCI.5326-13.2014).

The basis for this is the neuronal plasticity of the brain, which allows us to adapt to environmental stimuli. “The more often we are exposed to a certain stimulus, the quicker we perceive it,” Mareike Grotheer, doctoral candidate in Kovác‘s team says. This “training effect” could be measured directly in the brain. As magnetic resonance imaging shows, environmental stimuli which the brain has already adapted to, lead to distinctly lower responses in the processing areas. “This might sound paradoxical at first, but it only means that the brain arrives at the same result with less effort,” Kovács points out.

This adaptation mechanism is particularly pronounced in situations when we expect a very specific stimulus. “Our past experiences are essential in shaping our sense of perception,” Kovács stresses. For the recognition of characters experience also plays a decisive role. Practically we are surrounded by characters everywhere: in the media, in the streets, on everyday objects.

In their study the researchers showed different characters to test persons and recorded via functional magnetic resonance imaging the brain activity which was set into motion by the process of seeing. “The recordings clearly show that the brain activity adapts to the visual perception of characters in the course of the measurements,” Kovács says. However, this only applies to correct roman characters. The Jena researches were not able to detect a similar adaptation in a parallel test series with false, altered characters.

It stands to reason, Prof. Kovács sums up, that the reading and writing experience of a test person is responsible for this adaptation. It is not yet clear, if the adaptability of the brain can be specifically trained to the recognition of characters or if it is the result of evolutionary development processes – which is the case with the recognition of faces: This has to be shown in future research.

Original Publication:
Grotheer M, Kovács G. Repetition probability effects depend on prior experiences. The Journal of Neuroscience 2014 (DOI: 10.1523/JNEUROSCI.5326-13.2014)

Contact:
Prof. Dr. Gyula Kovács
Institute of Psychology
Friedrich Schiller University Jena
Leutragraben 1, 07743 Jena
Germany
Phone: ++49 3641 / 945936
Email: gyula.kovacs[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de

Dr. Ute Schönfelder | idw - Informationsdienst Wissenschaft

Further reports about: DOI Faces Neuroscience Phone activity experiences matter objects stimulus

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>