Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing is a matter of experience

22.05.2014

Neuroscientists of Jena University (Germany) discover adaptation mechanisms of the brain when perceiving letters of the alphabet

The headlights – two eyes, the radiator cowling – a smiling mouth: This is how our brain sometimes creates a face out of a car front. The same happens with other objects: in house facades, trees or stones – a “human face” can often be detected as well.


Neuroscientists of Jena University (Germany) discover adaptation mechanisms of the brain when perceiving letters of the alphabet. Photo: Jan-Peter Kasper/FSU

Prof. Dr. Gyula Kovács from Friedrich Schiller University Jena (Germany) knows the reason why. “Faces are of tremendous importance for human beings,” the neuroscientist explains. That’s why in the course of the evolution our visual perception has specialized in the recognition of faces in particular. “This sometimes even goes as far as us recognizing faces when there are none at all.”

Until now the researchers assumed that this phenomenon is an exception that can only be applied to faces. But, as Prof. Kovács and his colleague Mareike Grotheer were able to point out in a new study: these distinct adaptation mechanisms are not only restricted to the perception of faces. In the “The Journal of Neuroscience“ the Jena researchers have proved that the effect can also occur in the perception of letters. (DOI: 10.1523/JNEUROSCI.5326-13.2014).

The basis for this is the neuronal plasticity of the brain, which allows us to adapt to environmental stimuli. “The more often we are exposed to a certain stimulus, the quicker we perceive it,” Mareike Grotheer, doctoral candidate in Kovác‘s team says. This “training effect” could be measured directly in the brain. As magnetic resonance imaging shows, environmental stimuli which the brain has already adapted to, lead to distinctly lower responses in the processing areas. “This might sound paradoxical at first, but it only means that the brain arrives at the same result with less effort,” Kovács points out.

This adaptation mechanism is particularly pronounced in situations when we expect a very specific stimulus. “Our past experiences are essential in shaping our sense of perception,” Kovács stresses. For the recognition of characters experience also plays a decisive role. Practically we are surrounded by characters everywhere: in the media, in the streets, on everyday objects.

In their study the researchers showed different characters to test persons and recorded via functional magnetic resonance imaging the brain activity which was set into motion by the process of seeing. “The recordings clearly show that the brain activity adapts to the visual perception of characters in the course of the measurements,” Kovács says. However, this only applies to correct roman characters. The Jena researches were not able to detect a similar adaptation in a parallel test series with false, altered characters.

It stands to reason, Prof. Kovács sums up, that the reading and writing experience of a test person is responsible for this adaptation. It is not yet clear, if the adaptability of the brain can be specifically trained to the recognition of characters or if it is the result of evolutionary development processes – which is the case with the recognition of faces: This has to be shown in future research.

Original Publication:
Grotheer M, Kovács G. Repetition probability effects depend on prior experiences. The Journal of Neuroscience 2014 (DOI: 10.1523/JNEUROSCI.5326-13.2014)

Contact:
Prof. Dr. Gyula Kovács
Institute of Psychology
Friedrich Schiller University Jena
Leutragraben 1, 07743 Jena
Germany
Phone: ++49 3641 / 945936
Email: gyula.kovacs[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de

Dr. Ute Schönfelder | idw - Informationsdienst Wissenschaft

Further reports about: DOI Faces Neuroscience Phone activity experiences matter objects stimulus

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>