Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seed size is controlled by maternally produced small RNAs, scientists find

12.04.2012
Seed size is controlled by small RNA molecules inherited from a plant's mother, a discovery from scientists at The University of Texas at Austin that has implications for agriculture and understanding plant evolution.

"Crop seeds provide nearly 70 to 80 percent of calories and 60 to 70 percent of all proteins consumed by the human population," said Z. Jeff Chen, the D.J. Sibley Centennial Professor in Plant Molecular Genetics at The University of Texas at Austin. "Seed production is obviously very important for agriculture and plant evolution."

Chen and his colleagues, including David Baulcombe at the University of Cambridge, provide the first genetic evidence that seed development is controlled by maternally inherited "small interfering RNAs," or siRNAs.

They published their research April 3 in the journal PNAS.

SiRNAs are known to control a number of aspects of growth and development in plants and animals. The researchers used Arabidopsis, a rapidly growing flowering plant in the mustard family, for the study.

In this case, the researchers found that the siRNAs influence the development of a seed's endosperm, which is the part of the seed that provides nutrients to the developing plant embryo, much like the placenta in mammals. The endosperm is also the source for most of the nutritional content of the seed for humans and animals.

Despite the importance of the endosperm, little has been known about the molecular mechanisms that govern its growth.

In flowering plant seeds, the embryo is formed by fusion of one paternal and one maternal genome, while the endosperm combines one paternal and two maternal genomes. This process of embryo and endosperm formation is known as "double fertilization."

The scientists found that when a female plant with a duplicate genome (known as a tetraploid) is crossed with a male plant with a normal genome (called a diploid), not only is there an increase in the maternal genome in their offspring's seed endosperm, but there is also an associated increase in maternal siRNAs.

Those maternal siRNAs decrease the expression of genes that lead to larger endosperm growth, meaning that the siRNAs create smaller seeds.

"Now we understand that siRNAs play a large role in sensing maternal and paternal genome imbalance and controlling seed development, and that maternal control is important," said Chen.

The researchers are working to find out how exactly siRNAs regulate gene expression in the endosperm and embryo and how they control seed size. These new findings will enable scientists to develop biotechnological tools for improving seed production and crop yield.

But Chen cautioned that "bigger isn't always better." In fact, in his experiments, seeds lacking the control of the maternally inherited siRNAs grew so large that they collapsed.

Chen's research is funded by the National Science Foundation Genetic Mechanisms program. It was also the result of a Fulbright Award he received to do research with Baulcombe, a Royal Society research professor, at Cambridge. Baulcombe is widely recognized for his pioneering and seminal research discovering the role of siRNAs in gene silencing in plants.

Z. Jeff Chen | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Life Sciences:

nachricht Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth
01.03.2017 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Researchers Imitate Molecular Crowding in Cells
01.03.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>