Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Secrets of a rice-killing fungal toxin

27.10.2015

Researchers at the RIKEN Center for Sustainable Resource Sciences (CSRS) have discovered the enzyme needed for synthesis of tenuazonic acid (TeA), a well-known toxin that is produced by multiple types of fungus and affects fruits, vegetables, rice, and other crops. In their study published in Nature Communications, the authors describe how they found the gene for this enzyme, and reveal that its structure is unique among known enzymes.

Mycotoxins are toxic compounds produced by fungi that are not directly involved in growth, development, or reproduction. These secondary metabolites typically colonize crops and are a real economic burden for farmers. TeA is known to be produced by at least three different plant pathogenic fungi, and is associated with spoiling of fruits, vegetables, and food-crops, as well as post-harvest decay.


Rice blast disease resulting from the mycotoxin tenuazonic acid (produced by the fungus Magnaporthe oryzae).

Credit: RIKEN

"Now that we know the gene responsible for biosynthesis of this harmful toxin," notes co-lead author Takayuki Motoyama, "after further testing we might be able to devise a way to regulate its expression and prevent destruction of important crops."

When studying microorganisms like fungus, researchers have found that genes for many secondary metabolites are silent under laboratory conditions, which has made finding them especially difficult. The CSRS group led by Hiroyuki Osada has extensive experience studying secondary metabolites, and the team reasoned that OSM1--a gene associated with responses to environmental stress--might also be related to TeA production in Magnaporthe oryzae, a pathogenic rice fungus.

While wild-type M. oryzae did not yield any TeA, researchers were able to produce it from OSM1 knockout strains. They were also able to produce TeA by culturing wild-type M. oryzae with 1% dimethylsulphoxide, perhaps as a response to the unfavorable environment.

Having two methods to produce TeA in the lab proved invaluable for identifying the gene responsible for its biosynthesis. To do so, the team performed a DNA microarray analysis using the total RNA extracted under the two conditions that yielded TeA. Only one gene was found to be expressed significantly more in these conditions than when no toxin was produced.

Further tests were run to determine whether this gene really is responsible for TeA biosynthesis. First, knocking out this gene yielded a strain that could not produce the toxin, and researchers tentatively renamed the gene TeA synthetase 1--or TAS1. Then, the team created an M. oryzae strain that overexpressed TAS1, and as expected, this strain produced the toxin under normal conditions.

Next, researchers examined the structure of TAS1 and found that it is a hybrid enzyme containing an NRPS region followed by a PKS region. "This was very surprising", explains Motoyama. "It was assumed because of TeA's structure that it would be synthesized by a PKS-NRPS hybrid enzyme. In fact, the order of these regions was totally reversed!" While NRPS-PKS hybrid enzymes have been found in bacteria, TAS1 is the first fungal enzyme for a secondary metabolite to be discovered with an NRPS-PKS structure.

After analyzing how TeA is generated and determining that TAS1 synthesizes it from isoleucine and acetoacetyl-coenzyme A, the researchers searched for homologues in other organisms. While they found several other species of fungi that have genes for homologues sharing the same domain structure, bacterial sources with similar amino acid sequences did not share the same characteristic domain structure. Further research will be needed to find out if this novel enzyme has homologues that biosynthesize other compounds with useful biological functions.

While preventing TeA synthesis might me a goal for crop preservation, TeA also has antitumor, antibacterial, and antiviral properties that could prove beneficial in many situations. Understanding exactly how it is synthesized by TAS1 is therefore an important next step. "Now that we know that the KS domain of TAS1 is unique," notes co-lead author Choong-Soo Yun, "X-ray crystallographic analysis of this domain will be important for uncovering the reaction mechanism."

###

This study was supported in part by the Japanese Science and Technology Research Promotion Program for Agriculture, Forestry, Fisheries, and Food Industry.

reference: Yun CS, Motoyama T, Osada H. Biosynthesis of the mycotoxin tenuazonic acid by fungal NPRS-PKS hybrid enzyme. Nature Communications. doi: 10.1038/ncomms9758

Adam Phillips | EurekAlert!

Further reports about: RIKEN biosynthesis enzyme fungal fungus genes metabolites pathogenic strain structure synthesized wild-type

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>