Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Secrets of insect flight revealed

21.09.2009
Modelling the aerodynamic secrets of one of Nature's most efficient flyers

Researchers are one step closer to creating a micro-aircraft that flies with the manoeuvrability and energy efficiency of an insect after decoding the aerodynamic secrets of insect flight.

Dr John Young, from the University of New South Wales (UNSW) in Australia, and a team of animal flight researchers from Oxford University's Department of Zoology, used high-speed digital video cameras to film locusts in action in a wind tunnel, capturing how the shape of a locust's wing changes in flight. They used that information to create a computer model which recreates the airflow and thrust generated by the complex flapping movement.

The breakthrough result, published in the journal Science this week, means engineers understand for the first time the aerodynamic secrets of one of Nature's most efficient flyers – information vital to the creation of miniature robot flyers for use in situations such as search and rescue, military applications and inspecting hazardous environments.

"The so-called `bumblebee paradox' claiming that insects defy the laws of aerodynamics, is dead. Modern aerodynamics really can accurately model insect flight," said Dr Young, a lecturer in the School of Aerospace, Civil and Mechanical Engineering at the Australian Defence Force Academy (UNSW@ADFA).

"Biological systems have been optimised through evolutionary pressures over millions of years, and offer many examples of performance that far outstrips what we can achieve artificially.

"An insect's delicately structured wings, with their twists and curves, and ridged and wrinkled surfaces, are about as far away as you can get from the streamlined wing of an aircraft," Dr Young said.

"Until very recently it hasn't been possible to measure the actual shape of an insect's wings in flight – partly because their wings flap so fast, and partly because their shape is so complicated.

"Locusts are an interesting insect for engineers to study because of their ability to fly extremely long distances on very limited energy reserves."

Once the computer model of the locust wing movement was perfected, the researchers ran modified simulations to find out why the wing structure was so complex.

In one test they removed the wrinkles and curves but left the twist, while in the second test they replaced the wings with rigid flat plates. The results showed that the simplified models produced lift but were much less efficient, requiring much more power for flight.

"The message for engineers working to build insect-like micro-air vehicles is that the high lift of insect wings may be relatively easy to achieve, but that if the aim is to achieve efficiency of the sort that enables inter-continental flight in locusts, then the details of deforming wing design are critical," Dr Young said.

The Oxford team were Dr Simon Walker, Dr Richard Bomphrey, Dr Graham Taylor and Professor Adrian Thomas of the Animal Flight Group in the Department of Zoology.

The research paper, Details of Insect Wing Design and Deformation Enhance Aerodynamic Function and Flight Efficiency, appears in the September 18 issue of Science.

Media Contact: Dr John Young | +61 450 406 369 | j.young@adfa.edu.au

UNSW Media Office: Peter Trute | +61 2 9385 1933 | +61 410 271 826 | p.trute@unsw.edu.au

Peter Trute | EurekAlert!
Further information:
http://www.unsw.edu.au

More articles from Life Sciences:

nachricht High-Speed Locomotion Neurons Found in the Brainstem
24.10.2017 | Universität Basel

nachricht Antibiotic resistance: a strain of multidrug-resistant Escherichia coli is on the rise
24.10.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Single nanoparticle mapping paves the way for better nanotechnology

24.10.2017 | Physics and Astronomy

A quantum spin liquid

24.10.2017 | Physics and Astronomy

Antibiotic resistance: a strain of multidrug-resistant Escherichia coli is on the rise

24.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>