Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Secrets of insect flight revealed

21.09.2009
Modelling the aerodynamic secrets of one of Nature's most efficient flyers

Researchers are one step closer to creating a micro-aircraft that flies with the manoeuvrability and energy efficiency of an insect after decoding the aerodynamic secrets of insect flight.

Dr John Young, from the University of New South Wales (UNSW) in Australia, and a team of animal flight researchers from Oxford University's Department of Zoology, used high-speed digital video cameras to film locusts in action in a wind tunnel, capturing how the shape of a locust's wing changes in flight. They used that information to create a computer model which recreates the airflow and thrust generated by the complex flapping movement.

The breakthrough result, published in the journal Science this week, means engineers understand for the first time the aerodynamic secrets of one of Nature's most efficient flyers – information vital to the creation of miniature robot flyers for use in situations such as search and rescue, military applications and inspecting hazardous environments.

"The so-called `bumblebee paradox' claiming that insects defy the laws of aerodynamics, is dead. Modern aerodynamics really can accurately model insect flight," said Dr Young, a lecturer in the School of Aerospace, Civil and Mechanical Engineering at the Australian Defence Force Academy (UNSW@ADFA).

"Biological systems have been optimised through evolutionary pressures over millions of years, and offer many examples of performance that far outstrips what we can achieve artificially.

"An insect's delicately structured wings, with their twists and curves, and ridged and wrinkled surfaces, are about as far away as you can get from the streamlined wing of an aircraft," Dr Young said.

"Until very recently it hasn't been possible to measure the actual shape of an insect's wings in flight – partly because their wings flap so fast, and partly because their shape is so complicated.

"Locusts are an interesting insect for engineers to study because of their ability to fly extremely long distances on very limited energy reserves."

Once the computer model of the locust wing movement was perfected, the researchers ran modified simulations to find out why the wing structure was so complex.

In one test they removed the wrinkles and curves but left the twist, while in the second test they replaced the wings with rigid flat plates. The results showed that the simplified models produced lift but were much less efficient, requiring much more power for flight.

"The message for engineers working to build insect-like micro-air vehicles is that the high lift of insect wings may be relatively easy to achieve, but that if the aim is to achieve efficiency of the sort that enables inter-continental flight in locusts, then the details of deforming wing design are critical," Dr Young said.

The Oxford team were Dr Simon Walker, Dr Richard Bomphrey, Dr Graham Taylor and Professor Adrian Thomas of the Animal Flight Group in the Department of Zoology.

The research paper, Details of Insect Wing Design and Deformation Enhance Aerodynamic Function and Flight Efficiency, appears in the September 18 issue of Science.

Media Contact: Dr John Young | +61 450 406 369 | j.young@adfa.edu.au

UNSW Media Office: Peter Trute | +61 2 9385 1933 | +61 410 271 826 | p.trute@unsw.edu.au

Peter Trute | EurekAlert!
Further information:
http://www.unsw.edu.au

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>