Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Secrets of insect flight revealed

21.09.2009
Modelling the aerodynamic secrets of one of Nature's most efficient flyers

Researchers are one step closer to creating a micro-aircraft that flies with the manoeuvrability and energy efficiency of an insect after decoding the aerodynamic secrets of insect flight.

Dr John Young, from the University of New South Wales (UNSW) in Australia, and a team of animal flight researchers from Oxford University's Department of Zoology, used high-speed digital video cameras to film locusts in action in a wind tunnel, capturing how the shape of a locust's wing changes in flight. They used that information to create a computer model which recreates the airflow and thrust generated by the complex flapping movement.

The breakthrough result, published in the journal Science this week, means engineers understand for the first time the aerodynamic secrets of one of Nature's most efficient flyers – information vital to the creation of miniature robot flyers for use in situations such as search and rescue, military applications and inspecting hazardous environments.

"The so-called `bumblebee paradox' claiming that insects defy the laws of aerodynamics, is dead. Modern aerodynamics really can accurately model insect flight," said Dr Young, a lecturer in the School of Aerospace, Civil and Mechanical Engineering at the Australian Defence Force Academy (UNSW@ADFA).

"Biological systems have been optimised through evolutionary pressures over millions of years, and offer many examples of performance that far outstrips what we can achieve artificially.

"An insect's delicately structured wings, with their twists and curves, and ridged and wrinkled surfaces, are about as far away as you can get from the streamlined wing of an aircraft," Dr Young said.

"Until very recently it hasn't been possible to measure the actual shape of an insect's wings in flight – partly because their wings flap so fast, and partly because their shape is so complicated.

"Locusts are an interesting insect for engineers to study because of their ability to fly extremely long distances on very limited energy reserves."

Once the computer model of the locust wing movement was perfected, the researchers ran modified simulations to find out why the wing structure was so complex.

In one test they removed the wrinkles and curves but left the twist, while in the second test they replaced the wings with rigid flat plates. The results showed that the simplified models produced lift but were much less efficient, requiring much more power for flight.

"The message for engineers working to build insect-like micro-air vehicles is that the high lift of insect wings may be relatively easy to achieve, but that if the aim is to achieve efficiency of the sort that enables inter-continental flight in locusts, then the details of deforming wing design are critical," Dr Young said.

The Oxford team were Dr Simon Walker, Dr Richard Bomphrey, Dr Graham Taylor and Professor Adrian Thomas of the Animal Flight Group in the Department of Zoology.

The research paper, Details of Insect Wing Design and Deformation Enhance Aerodynamic Function and Flight Efficiency, appears in the September 18 issue of Science.

Media Contact: Dr John Young | +61 450 406 369 | j.young@adfa.edu.au

UNSW Media Office: Peter Trute | +61 2 9385 1933 | +61 410 271 826 | p.trute@unsw.edu.au

Peter Trute | EurekAlert!
Further information:
http://www.unsw.edu.au

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>