Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The secrets of a tadpole's tail and the implications for human healing

Scientists at The University of Manchester have made a surprising finding after studying how tadpoles re-grow their tails which could have big implications for research into human healing and regeneration.

It is generally appreciated that frogs and salamanders have remarkable regenerative capacities, in contrast to mammals, including humans. For example, if a tadpole loses its tail a new one will regenerate within a week. For several years Professor Enrique Amaya and his team at The Healing Foundation Centre in the Faculty of Life Sciences have been trying to better understand the regeneration process, in the hope of eventually using this information to find new therapies that will improve the ability of humans to heal and regenerate better.

In an earlier study, Professor Amaya's group identified which genes were activated during tail regeneration. Unexpectedly, that study showed that several genes that are involved in metabolism are activated, in particular those that are linked to the production of reactive oxygen species (ROS) - chemically reactive molecules containing oxygen. What was unusually about those findings is that ROS are commonly believed to be harmful to cells.

Professor Amaya and his group decided to follow up on this unexpected result and their new findings will be published in the next issue of Nature Cell Biology.

To examine ROS during tail regeneration, they measured the level of H2O2 (hydrogen peroxide, a common reactive oxygen species in cells) using a fluorescent molecule that changes light emission properties in the presence of H2O2. Using this advanced form of imaging, Professor Amaya and his group were able to show that a marked increase in H2O2 occurs following tail amputation and interestingly, they showed that the H2O2 levels remained elevated during the entire tail regeneration process, which lasts several days.

Talking about the research Professor Amaya says: "We were very surprised to find these high levels of ROS during tail regeneration. Traditionally, ROS have been thought to have a negative impact on cells. But in this case they seemed to be having a positive impact on tail re-growth."

To assess how vital the presence of ROS are in the regeneration process, Professor Amaya's team limited ROS production using two methods. The first was by using chemicals, including an antioxidant, and the second was by removing a gene responsible for ROS production. In both cases the regeneration process was inhibited and the tadpole tail did not grow back.

Professor Amaya says: "When we decreased ROS levels, tissue growth and regeneration failed to occur. Our research suggests that ROS are essential to initiate and sustain the regeneration response. We also found that ROS production is essential to activate Wnt signalling, which has been implicated in essentially every studied regeneration system, including those found in humans. It was also striking that our study showed that antioxidants had such a negative impact on tissue regrowth, as we are often told that antioxidants should be beneficial to health."

The publication of Professor Amaya's study comes just days after a paper from the Nobel Prize winner and co-discoverer of the structure of DNA, James Watson, who has suggested antioxidants could be harmful to people in the later stages of cancer.

Professor Amaya comments: "It's very interesting that two papers suggesting that antioxidants may not always be beneficial have been published recently. Our findings and those of others are leading to a reversal in our thinking about the relative beneficial versus harmful effects that oxidants and antioxidants may have on human health, and indeed that oxidants, such as ROS, may play some important beneficial roles in healing and regeneration."

The next step for the team at the Healing Foundation Centre will be to study ROS and their role in the healing and regenerative processes more closely. With a better understanding, Professor Amaya and his team hope to apply their findings to human health to identify whether manipulating ROS levels in the body could improve our ability to heal and regenerate tissues better. Thus these findings have very important implications in regenerative medicine.

Morwenna Grills | EurekAlert!
Further information:

Further reports about: Amaya Gates Foundation H2O2 Nobel Prize healing human health oxygen species

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>