Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Secrets of the 4 chambers revealed by reptile hearts

04.09.2009
The molecular blueprint for evolution from cold-blooded to warm-blooded has been found

The first genetic link in the evolution of the heart from three-chambered to four-chambered has been found, illuminating part of the puzzle of how birds and mammals became warm-blooded.

Frogs have a three-chambered heart. It consists of two atria and one ventricle. As the right side of a frog's heart receives deoxygenated blood from the body, and the left side receives freshly oxygenated blood from the lungs, the two streams of blood mix together in the ventricle, sending out a concoction that is not fully oxygenated to the rest of the frog's body.

Turtles are a curious transition--they still have three chambers, but a wall, or septum is beginning to form in the single ventricle. This change affords the turtle's body blood that is slightly richer in oxygen than the frog's.

Birds and mammals, however, have a fully septated ventricle--a bona fide four-chambered heart. This configuration ensures the separation of low-pressure circulation to the lungs, and high-pressure pumping into the rest of the body.

As warm-blooded animals, we use a lot of energy and therefore need a great supply of oxygen for our activities. Thanks to our four-chambered heart, we are at an evolutionary advantage: we're able to roam, hunt and hide even in the cold of night, or the chill of winter.

But not all humans are so lucky to have an intact, four-chambered heart. At one or two percent, congenital heart disease is the most common birth defect. And a large portion of that is due to VSD, or ventricular septum defects. The condition is frequently correctable with surgery.

Benoit Bruneau of the Gladstone Institute of Cardiovascular Disease has honed into the molecular forces at work. In particular, he studies the transcription factor, Tbx5, in early stages of embryological development. He calls Tbx5 "a master regulator of the heart."

Scott Gilbert of Swarthmore College and Juli Wade of Michigan State University study evolutionary developmental biology of turtles and anole lizards respectively. When Bruneau teamed up with them, he was able to examine a wide evolutionary spectrum of animals. He found that in the cold-blooded, Tbx5 is expressed uniformly throughout the forming heart's wall. In contrast, warm-blooded embryos show the protein very clearly restricted to the left side of the ventricle. It is this restriction that allows for the separation between right and left ventricle.

Interestingly, in the turtle, a transitional animal anatomically--with a three-chambered, incompletely septated heart, the molecular signature is transitional as well. A higher concentration of Tbx5 is found on the left side of the heart, gradually dissipating towards the right.

Bruneau concludes: "The great thing about looking backwards like we've done with reptilian evolution is that it gives us a really good handle on how we can now look forward and try to understand how a protein like Tbx5 is involved in forming the heart and how in the case of congenital heart disease its function is impaired."

The journal Nature reports the finding in its Sept. 3 issue. The National Science Foundation supports the research.

Lily Whiteman | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>