Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The secret of the turtle shell

A team of Japanese scientists has uncovered anatomical clues charting the developmental path by which the turtle acquired its shell.

The evolutionary riddle of the turtle shell is one step closer to being solved thanks to groundbreaking research published this week in Science. A team of Japanese scientists has uncovered anatomical clues charting the developmental path by which the turtle acquired its shell.

Turtle morphology poses a unique puzzle in that the turtle's scapulae (shoulder blades), situated outside the ribs in other animals, are found inside its shell (which is formed from the bones equivalent to ribs in other species). To explain this inside-out skeletal morphology, researchers at the Laboratory for Evolutionary Morphology of the RIKEN Center for Developmental Biology compared embryonic development of the turtle to that of chicken and mice. While muscles and skeletons initially developed in a similar way, turtle embryo development diverged at a late stage, with the ventral part of the body wall folding inwards together with the scapula, a step made possible by the anatomical layout of the turtle embryo.

Their findings also indicate a resemblance between the early form of the turtle embryo and that of Odontochelys, a 220 million-year-old fossil species unearthed in China last year, believed to represent the ancestor of all modern turtles. Based on their results, the research group has concluded that modern turtle anatomy results from the late development of ribs in an Odontochelys-like ancestor, unraveling the long-standing mystery of the turtle and its shell.

For more information, please contact
Dr. Hiroshi Nagashima
Laboratory for Evolutionary Morphology
RIKEN Center for Developmental Biology
Tel: +81-78-306-3064 / Fax: +81-78-306-3370
Ms. Saeko Okada (PI officer)
Global Relations Office
Tel: +81-48-462-1225 / Fax: +81-48-467-9443

Saeko Okada | Research asia research news
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>