Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The secret math of plants: UCLA biologists uncover rules that govern leaf design

31.10.2013
Life scientists from UCLA's College of Letters and Science have discovered fundamental rules of leaf design that underlie plants' ability to produce leaves that vary enormously in size. In their mathematical design, leaves are the "perfect machines," said Lawren Sack, a professor of ecology and evolutionary biology and senior author of the research.

The UCLA team discovered the mathematical relationships using "allometric analysis," which looks at how the proportions of parts of an organism change with differences in total size. This approach has been used by scientists since Galileo but had never before been applied to the interior of leaves.

Reporting in the October issue of the American Journal of Botany, the biologists focused on how leaf anatomy varies across leaves of different sizes. They examined plant species from around the world, all grown on the UCLA campus.

While it is easy to observe major differences in leaf surface area among species, they said, differences in leaf thickness are less obvious but equally important.

"Once you start rubbing leaves between your fingers, you can feel that some leaves are floppy and thin, while others are rigid and thick," said Grace John, a UCLA doctoral student in ecology and evolutionary biology and lead author of the research. "We started with the simplest questions — but ones that had never been answered clearly — such as whether leaves that are thicker or larger in area are constructed of different sizes or types of cells."

The researchers embedded pieces of leaf in plastic and cut cross-sections thinner than a single cell to observe each leaf's microscopic layout. This allowed them to test the underlying relationship between cell and tissue dimensions and leaf size across species.

Leaves are made up of three basic tissues, each containing cells with particular functions: the outer layer, or epidermis; the mesophyll, which contains cells that conduct photosynthesis; and the vascular tissue, whose cells are involved in water and sugar transport. The team found that the thicker the leaf, the larger the size of the cells in all of its tissues — except in the vascular tissue.

These relationships also applied to the components of the individual cells. Plant cells, unlike animal cells, are surrounded by carbohydrate-based cell walls, and the scientists discovered that the larger cells of thicker leaves are surrounded by thicker cell walls, in a strict proportionality.

The team was surprised by the "extraordinary" strength of the relationships linking cell size, cell-wall thickness and leaf thickness across diverse and distantly related plant species. These relationships can be described by new, simple mathematical equations, effectively allowing scientists to predict the dimension of cells and cell walls based on the thickness of a leaf. In most cases, the relationships the team found were what is known as "isometric."

"This means that if a leaf has a larger cell in one tissue, it has a larger cell in another tissue, in direct proportion, as if you blew up the leaf and all its cells using Photoshop," said Christine Scoffoni, a doctoral student at UCLA and member of the research team.

By contrast, a leaf's area is unrelated to the sizes of the cells inside. This allows plants to produce leaves with a huge range of surface areas without the need for larger cells, which would be inefficient in function, the researchers said.

The team hypothesized that these strong mathematical relationships arise from leaf development — the process by which leaves form on the branch, growing from a few cells that divide into many, with cells then expanding until the leaf is fully mature. Because light can penetrate only so many layers of cells, leaves cannot vary much in the number of cells arranged vertically. The expansion of individual cells and their cell walls occurs simultaneously and is reflected in the thickness of the whole leaf. On the other hand, the number of cells arranged horizontally in the leaf continues to increase as leaves expand, regardless of the size of the individual cells.

The new ability to predict the internal anatomy of leaves from their thickness can give clues to the function of the leaf, because leaf thickness affects both the overall photosynthetic rate and the lifespan, said Sack.

"A minor difference in thickness tells us more about the layout inside the leaf than a much more dramatic difference in leaf area," John said.

The design of the leaf provides insights into how larger structures can be constructed without losing function or stability.

"Fundamental discoveries like these highlight the elegant solutions evolved by natural systems," Sack said. "Plant anatomy often has been perceived as boring. Quantitative discoveries like these prove how exciting this science can be. We need to start re-establishing skill sets in this type of fundamental science to extract practical lessons from the mysteries of nature.

"There are so many properties of leaves we cannot yet imitate synthetically," he added. "Leaves are providing us with the blueprints for bigger, better things. We just have to look close enough to read them."

The new allometric equations are an important step toward understanding the design of leaves on a cellular basis, John said. And because leaves are so diverse, she said, there is much to learn. In future research, the group will study species that are very closely related in an effort to uncover any evolutionary relationships between leaf design and function.

"What makes the cross-sections especially exciting is the huge variation from one species to the next," John said. "Some have relatively enormous cells in certain tissues, and cell shapes vary from cylindrical to star-shaped. Each species is beautiful in its distinctiveness. All of this variation needs decoding."

The research was federally funded by the National Science Foundation.

UCLA is California's largest university, with an enrollment of more than 40,000 undergraduate and graduate students. The UCLA College of Letters and Science and the university's 11 professional schools feature renowned faculty and offer 337 degree programs and majors. UCLA is a national and international leader in the breadth and quality of its academic, research, health care, cultural, continuing education and athletic programs. Seven alumni and six faculty have been awarded the Nobel Prize.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Stuart Wolpert | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>