Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The secret math of plants: UCLA biologists uncover rules that govern leaf design

31.10.2013
Life scientists from UCLA's College of Letters and Science have discovered fundamental rules of leaf design that underlie plants' ability to produce leaves that vary enormously in size. In their mathematical design, leaves are the "perfect machines," said Lawren Sack, a professor of ecology and evolutionary biology and senior author of the research.

The UCLA team discovered the mathematical relationships using "allometric analysis," which looks at how the proportions of parts of an organism change with differences in total size. This approach has been used by scientists since Galileo but had never before been applied to the interior of leaves.

Reporting in the October issue of the American Journal of Botany, the biologists focused on how leaf anatomy varies across leaves of different sizes. They examined plant species from around the world, all grown on the UCLA campus.

While it is easy to observe major differences in leaf surface area among species, they said, differences in leaf thickness are less obvious but equally important.

"Once you start rubbing leaves between your fingers, you can feel that some leaves are floppy and thin, while others are rigid and thick," said Grace John, a UCLA doctoral student in ecology and evolutionary biology and lead author of the research. "We started with the simplest questions — but ones that had never been answered clearly — such as whether leaves that are thicker or larger in area are constructed of different sizes or types of cells."

The researchers embedded pieces of leaf in plastic and cut cross-sections thinner than a single cell to observe each leaf's microscopic layout. This allowed them to test the underlying relationship between cell and tissue dimensions and leaf size across species.

Leaves are made up of three basic tissues, each containing cells with particular functions: the outer layer, or epidermis; the mesophyll, which contains cells that conduct photosynthesis; and the vascular tissue, whose cells are involved in water and sugar transport. The team found that the thicker the leaf, the larger the size of the cells in all of its tissues — except in the vascular tissue.

These relationships also applied to the components of the individual cells. Plant cells, unlike animal cells, are surrounded by carbohydrate-based cell walls, and the scientists discovered that the larger cells of thicker leaves are surrounded by thicker cell walls, in a strict proportionality.

The team was surprised by the "extraordinary" strength of the relationships linking cell size, cell-wall thickness and leaf thickness across diverse and distantly related plant species. These relationships can be described by new, simple mathematical equations, effectively allowing scientists to predict the dimension of cells and cell walls based on the thickness of a leaf. In most cases, the relationships the team found were what is known as "isometric."

"This means that if a leaf has a larger cell in one tissue, it has a larger cell in another tissue, in direct proportion, as if you blew up the leaf and all its cells using Photoshop," said Christine Scoffoni, a doctoral student at UCLA and member of the research team.

By contrast, a leaf's area is unrelated to the sizes of the cells inside. This allows plants to produce leaves with a huge range of surface areas without the need for larger cells, which would be inefficient in function, the researchers said.

The team hypothesized that these strong mathematical relationships arise from leaf development — the process by which leaves form on the branch, growing from a few cells that divide into many, with cells then expanding until the leaf is fully mature. Because light can penetrate only so many layers of cells, leaves cannot vary much in the number of cells arranged vertically. The expansion of individual cells and their cell walls occurs simultaneously and is reflected in the thickness of the whole leaf. On the other hand, the number of cells arranged horizontally in the leaf continues to increase as leaves expand, regardless of the size of the individual cells.

The new ability to predict the internal anatomy of leaves from their thickness can give clues to the function of the leaf, because leaf thickness affects both the overall photosynthetic rate and the lifespan, said Sack.

"A minor difference in thickness tells us more about the layout inside the leaf than a much more dramatic difference in leaf area," John said.

The design of the leaf provides insights into how larger structures can be constructed without losing function or stability.

"Fundamental discoveries like these highlight the elegant solutions evolved by natural systems," Sack said. "Plant anatomy often has been perceived as boring. Quantitative discoveries like these prove how exciting this science can be. We need to start re-establishing skill sets in this type of fundamental science to extract practical lessons from the mysteries of nature.

"There are so many properties of leaves we cannot yet imitate synthetically," he added. "Leaves are providing us with the blueprints for bigger, better things. We just have to look close enough to read them."

The new allometric equations are an important step toward understanding the design of leaves on a cellular basis, John said. And because leaves are so diverse, she said, there is much to learn. In future research, the group will study species that are very closely related in an effort to uncover any evolutionary relationships between leaf design and function.

"What makes the cross-sections especially exciting is the huge variation from one species to the next," John said. "Some have relatively enormous cells in certain tissues, and cell shapes vary from cylindrical to star-shaped. Each species is beautiful in its distinctiveness. All of this variation needs decoding."

The research was federally funded by the National Science Foundation.

UCLA is California's largest university, with an enrollment of more than 40,000 undergraduate and graduate students. The UCLA College of Letters and Science and the university's 11 professional schools feature renowned faculty and offer 337 degree programs and majors. UCLA is a national and international leader in the breadth and quality of its academic, research, health care, cultural, continuing education and athletic programs. Seven alumni and six faculty have been awarded the Nobel Prize.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Stuart Wolpert | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>