Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Secret of “Fetid Fluorite” Aired

09.07.2012
Elemental fluorine F2 detected for the first time in a natural mineral

Why does “fetid fluorite”, a mineral that is found in the Upper Palatinate in Bavaria, Germany, have such an unpleasant sharp smell when it is crushed? Scientists in Munich have now found the solution to this puzzle, not only bringing an end to a controversial discussion that has been going on for about 200 years, but also altering a hard and fast textbook rule.

In the journal Angewandte Chemie, the researchers have demonstrated that the stench is caused by elemental fluorine. This unambiguously proves that despite prior assumptions, elemental fluorine does occur in nature.

Elemental fluorine (F2) is an extremely reactive gas that attacks nearly all materials; it even eats away at laboratory glassware. In contrast, chemically bound fluorine atoms in inorganic or organic compounds are – in proper doses – harmless and actually quite useful, whether in fluoride toothpaste, flame retardant materials, or Teflon. It is no wonder that chemists have so far been convinced that fluorine cannot occur in nature in its elemental form, but only as the fluoride ion, for example in minerals like fluorite (CaF2).

One special form of fluorite is found in the “Maria” mine in Wölsendorf in the Upper Palatinate in Germany. The unusual thing about this mineral is its odor, which pricks the nose as soon as this “fetid fluorite” or “antozonite” is crushed. But what causes the smell? Experts have been arguing about this for almost 200 years. A number of important chemists, including Friedrich Wöhler (1800-1882) and Justus von Liebig (1803-1873), discussed possible different substances that may be responsible for the smell. Over the years, elemental fluorine; iodine; ozone; compounds of phosphorus, arsenic, sulfur, and selenium; chlorine; hypochloric acid; and fluoridated hydrocarbons have all been blamed for the stench.

Florian Kraus of the TU Munich, as well as Jörn Schmedt auf der Günne and Martin Mangstl at the Ludwig Maximilians University in Munich have now obtained direct proof: Elemental fluorine is the guilty party that causes the unpleasant odor. By using 19F nuclear magnetic resonance spectroscopy (NMR spectroscopy), they were able to show for the first time that elemental fluorine is contained in “antozonite”.

How is this possible for such a reactive gas? The researchers explain that “antozonite” contains a tiny amount of uranium that, together with its radioactive daughter nuclides, constantly releases radiation into the surrounding mineral. This causes fluorite to split into calcium and elemental fluorine, forming the calcium clusters that give “antozonite” its dark purple color. The fluorine is contained in tiny enclaves surrounded by nonreactive fluorite, which shields it from the calcium, allowing it to maintain its elemental form.

About the Author
Dr. Florian Kraus is Assistant Professor for Anorganic Chemistry at the Technical University of Munich (Germany). His research focuses on the chemistry of fluorine.
Author: Florian Kraus, Technische Universität München (Germany), http://www.ch.tum.de/fkraus/kraus.html
Title: Occurrence of Difluorine F2 in Nature—In Situ Proof and Quantification by NMR Spectroscopy

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201203515

Florian Kraus | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>