Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The secret of DNA methylation

19.06.2013
Methylation refers to a chemical modification of DNA and this modification can occur in millions of positions in the DNA sequence.

Until now, scientists believed that this epigenetic phenomenon actively reduced the expression of certain genes. Today, a team of researchers from the University of Geneva (UNIGE), Switzerland, led by Emmanouil Dermitzakis, Louis-Jeantet Professor at the Faculty of Medicine, reveals that this is not always the case and that DNA methylation may play both a passive and active role in gene regulation.

The mechanistic relationships between DNA sequence variability and gene expres- sion therefore prove to be more complex and variable than originally assumed. This discovery, published in the journal eLife, highlights the potential risks associated with over-interpreting a correlation rather than a causal link between two variables, especially when it comes to assessing disease predisposition.

The genome contains many genetic variations responsible for the diversity of living beings and their predisposition to developing certain diseases. Because of these variations, genes may be expressed differently from one individual to another. The same gene may likewise be expressed differently in different cells of a single person. These differences among individuals or cells may be mediated by genetic and/or epigenetic effects. Epigenetics is the chemical modification of DNA and its associated proteins, which may serve as a way for our cells to remember past exposures to environmental challenges or mediate genetic effects. It, therefore, offers a new way to study the role of the environment on the expression of our genes.

Causality vs. correlation

One epigenetic phenomenon, which the team from UNIGE has investigated, is DNA methylation. Until now, scientists believed that DNA methylation actively reduced the expression of certain genes. After having conducted a large-scale study performed on cells from the umbilical cords of 204 newborns, the researchers from UNIGE demonstrate that DNA methylation may play both a passive and active role in gene regulation. Indeed, in some cases, contrary to what was expected, DNA methylation has no impact on gene expression. The mechanistic relationships between DNA variability and gene expression prove to be more complex and variable than previously assumed. It was therefore essential to determine whether a causal link exists between methylation and gene expression, rather than relying on a simple correlation.

«The results of this study shed light on the great complexity of factors that contribute to the physiological differences between people and allow us to better understand how genetic diseases develop,» explains Maria Gutierrez-Arcelus, first author of this article and member of the Swiss National Centre of Competence in Research Frontiers in Genetics.
This study highlights the prime importance of determining the causal relationship between biological variables in order to be able to draw reliable conclusions. Correlations are useful when we want to make the assessment of the status of a patient. But it is only with causal relationships that we can make decisions on the relevant medical inter- ventions and expect a predictable and reliable outcome. "Correlation simply allows you to state the facts about someone's health. Causali- ty is the way to actually intervene. It is the difference between stating that a door is locked and having the key to open it", says Emmanouil Dermitzakis, professor at the University of Geneva Medical School.

The researchers predict that the approach described in their study will pave the way to further develop the modelling of biomedical parameters and large-scale datasets in order to improve biological knowledge and patient outcome.

Emmanouil Dermitzakis | EurekAlert!
Further information:
http://www.unige.ch

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>