Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The secret of DNA methylation

19.06.2013
Methylation refers to a chemical modification of DNA and this modification can occur in millions of positions in the DNA sequence.

Until now, scientists believed that this epigenetic phenomenon actively reduced the expression of certain genes. Today, a team of researchers from the University of Geneva (UNIGE), Switzerland, led by Emmanouil Dermitzakis, Louis-Jeantet Professor at the Faculty of Medicine, reveals that this is not always the case and that DNA methylation may play both a passive and active role in gene regulation.

The mechanistic relationships between DNA sequence variability and gene expres- sion therefore prove to be more complex and variable than originally assumed. This discovery, published in the journal eLife, highlights the potential risks associated with over-interpreting a correlation rather than a causal link between two variables, especially when it comes to assessing disease predisposition.

The genome contains many genetic variations responsible for the diversity of living beings and their predisposition to developing certain diseases. Because of these variations, genes may be expressed differently from one individual to another. The same gene may likewise be expressed differently in different cells of a single person. These differences among individuals or cells may be mediated by genetic and/or epigenetic effects. Epigenetics is the chemical modification of DNA and its associated proteins, which may serve as a way for our cells to remember past exposures to environmental challenges or mediate genetic effects. It, therefore, offers a new way to study the role of the environment on the expression of our genes.

Causality vs. correlation

One epigenetic phenomenon, which the team from UNIGE has investigated, is DNA methylation. Until now, scientists believed that DNA methylation actively reduced the expression of certain genes. After having conducted a large-scale study performed on cells from the umbilical cords of 204 newborns, the researchers from UNIGE demonstrate that DNA methylation may play both a passive and active role in gene regulation. Indeed, in some cases, contrary to what was expected, DNA methylation has no impact on gene expression. The mechanistic relationships between DNA variability and gene expression prove to be more complex and variable than previously assumed. It was therefore essential to determine whether a causal link exists between methylation and gene expression, rather than relying on a simple correlation.

«The results of this study shed light on the great complexity of factors that contribute to the physiological differences between people and allow us to better understand how genetic diseases develop,» explains Maria Gutierrez-Arcelus, first author of this article and member of the Swiss National Centre of Competence in Research Frontiers in Genetics.
This study highlights the prime importance of determining the causal relationship between biological variables in order to be able to draw reliable conclusions. Correlations are useful when we want to make the assessment of the status of a patient. But it is only with causal relationships that we can make decisions on the relevant medical inter- ventions and expect a predictable and reliable outcome. "Correlation simply allows you to state the facts about someone's health. Causali- ty is the way to actually intervene. It is the difference between stating that a door is locked and having the key to open it", says Emmanouil Dermitzakis, professor at the University of Geneva Medical School.

The researchers predict that the approach described in their study will pave the way to further develop the modelling of biomedical parameters and large-scale datasets in order to improve biological knowledge and patient outcome.

Emmanouil Dermitzakis | EurekAlert!
Further information:
http://www.unige.ch

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>