Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The secret of DNA methylation

19.06.2013
Methylation refers to a chemical modification of DNA and this modification can occur in millions of positions in the DNA sequence.

Until now, scientists believed that this epigenetic phenomenon actively reduced the expression of certain genes. Today, a team of researchers from the University of Geneva (UNIGE), Switzerland, led by Emmanouil Dermitzakis, Louis-Jeantet Professor at the Faculty of Medicine, reveals that this is not always the case and that DNA methylation may play both a passive and active role in gene regulation.

The mechanistic relationships between DNA sequence variability and gene expres- sion therefore prove to be more complex and variable than originally assumed. This discovery, published in the journal eLife, highlights the potential risks associated with over-interpreting a correlation rather than a causal link between two variables, especially when it comes to assessing disease predisposition.

The genome contains many genetic variations responsible for the diversity of living beings and their predisposition to developing certain diseases. Because of these variations, genes may be expressed differently from one individual to another. The same gene may likewise be expressed differently in different cells of a single person. These differences among individuals or cells may be mediated by genetic and/or epigenetic effects. Epigenetics is the chemical modification of DNA and its associated proteins, which may serve as a way for our cells to remember past exposures to environmental challenges or mediate genetic effects. It, therefore, offers a new way to study the role of the environment on the expression of our genes.

Causality vs. correlation

One epigenetic phenomenon, which the team from UNIGE has investigated, is DNA methylation. Until now, scientists believed that DNA methylation actively reduced the expression of certain genes. After having conducted a large-scale study performed on cells from the umbilical cords of 204 newborns, the researchers from UNIGE demonstrate that DNA methylation may play both a passive and active role in gene regulation. Indeed, in some cases, contrary to what was expected, DNA methylation has no impact on gene expression. The mechanistic relationships between DNA variability and gene expression prove to be more complex and variable than previously assumed. It was therefore essential to determine whether a causal link exists between methylation and gene expression, rather than relying on a simple correlation.

«The results of this study shed light on the great complexity of factors that contribute to the physiological differences between people and allow us to better understand how genetic diseases develop,» explains Maria Gutierrez-Arcelus, first author of this article and member of the Swiss National Centre of Competence in Research Frontiers in Genetics.
This study highlights the prime importance of determining the causal relationship between biological variables in order to be able to draw reliable conclusions. Correlations are useful when we want to make the assessment of the status of a patient. But it is only with causal relationships that we can make decisions on the relevant medical inter- ventions and expect a predictable and reliable outcome. "Correlation simply allows you to state the facts about someone's health. Causali- ty is the way to actually intervene. It is the difference between stating that a door is locked and having the key to open it", says Emmanouil Dermitzakis, professor at the University of Geneva Medical School.

The researchers predict that the approach described in their study will pave the way to further develop the modelling of biomedical parameters and large-scale datasets in order to improve biological knowledge and patient outcome.

Emmanouil Dermitzakis | EurekAlert!
Further information:
http://www.unige.ch

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>