Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The secret of DNA methylation

19.06.2013
Methylation refers to a chemical modification of DNA and this modification can occur in millions of positions in the DNA sequence.

Until now, scientists believed that this epigenetic phenomenon actively reduced the expression of certain genes. Today, a team of researchers from the University of Geneva (UNIGE), Switzerland, led by Emmanouil Dermitzakis, Louis-Jeantet Professor at the Faculty of Medicine, reveals that this is not always the case and that DNA methylation may play both a passive and active role in gene regulation.

The mechanistic relationships between DNA sequence variability and gene expres- sion therefore prove to be more complex and variable than originally assumed. This discovery, published in the journal eLife, highlights the potential risks associated with over-interpreting a correlation rather than a causal link between two variables, especially when it comes to assessing disease predisposition.

The genome contains many genetic variations responsible for the diversity of living beings and their predisposition to developing certain diseases. Because of these variations, genes may be expressed differently from one individual to another. The same gene may likewise be expressed differently in different cells of a single person. These differences among individuals or cells may be mediated by genetic and/or epigenetic effects. Epigenetics is the chemical modification of DNA and its associated proteins, which may serve as a way for our cells to remember past exposures to environmental challenges or mediate genetic effects. It, therefore, offers a new way to study the role of the environment on the expression of our genes.

Causality vs. correlation

One epigenetic phenomenon, which the team from UNIGE has investigated, is DNA methylation. Until now, scientists believed that DNA methylation actively reduced the expression of certain genes. After having conducted a large-scale study performed on cells from the umbilical cords of 204 newborns, the researchers from UNIGE demonstrate that DNA methylation may play both a passive and active role in gene regulation. Indeed, in some cases, contrary to what was expected, DNA methylation has no impact on gene expression. The mechanistic relationships between DNA variability and gene expression prove to be more complex and variable than previously assumed. It was therefore essential to determine whether a causal link exists between methylation and gene expression, rather than relying on a simple correlation.

«The results of this study shed light on the great complexity of factors that contribute to the physiological differences between people and allow us to better understand how genetic diseases develop,» explains Maria Gutierrez-Arcelus, first author of this article and member of the Swiss National Centre of Competence in Research Frontiers in Genetics.
This study highlights the prime importance of determining the causal relationship between biological variables in order to be able to draw reliable conclusions. Correlations are useful when we want to make the assessment of the status of a patient. But it is only with causal relationships that we can make decisions on the relevant medical inter- ventions and expect a predictable and reliable outcome. "Correlation simply allows you to state the facts about someone's health. Causali- ty is the way to actually intervene. It is the difference between stating that a door is locked and having the key to open it", says Emmanouil Dermitzakis, professor at the University of Geneva Medical School.

The researchers predict that the approach described in their study will pave the way to further develop the modelling of biomedical parameters and large-scale datasets in order to improve biological knowledge and patient outcome.

Emmanouil Dermitzakis | EurekAlert!
Further information:
http://www.unige.ch

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>