Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seaweed and fireflies brew may guide stem cell treatment for peripheral artery disease

11.03.2009
An unlikely brew of seaweed and glow-in-the-dark biochemical agents may hold the key to the safe use of transplanted stem cells to treat patients with severe peripheral arterial disease (PAD), according to a team of veterinarians, basic scientists and interventional radiologists at Johns Hopkins.

In a preliminary "proof of concept" study in rabbits, Johns Hopkins scientists safely and successfully delivered therapeutic stem cells via intramuscular injections and then monitored the stem cells' viability once they reached their targets.

A report of the study by Johns Hopkins radiologists is scheduled for presentation at the Society of Interventional Radiology's 34th annual scientific meeting March 10.

Stem cells hold promise in treating PAD by reconstituting or increasing the number of blood vessels to replace or augment those choked off by plaque buildup. A chronic condition that can lead to amputations and even death, PAD is marked by vastly reduced circulation of blood in vessels feeding the legs and other "peripheral" body parts, and affects as many as 10 million Americans. Many cases can be treated with angioplasty or stents, similar to approaches used in coronary artery disease, but for some patients with extensive disease conventional treatment is not feasible, researchers say.

Among the technical hurdles to improving blood flow in such patients, according to Dara L. Kraitchman, V.M.D., Ph.D., associate professor of radiology at Johns Hopkins, is a means of telling doctors whether injected stem cells are staying alive and reaching the right targets to grow and develop into the needed new tissue.

This is critical, Kraitchman says, because the body's own immune defenses may recognize the potentially helpful donor stem cells as foreign invaders and try to destroy them, and also because traditional radioactive labeling agents, or tracers, which are normally used to track cells, can be toxic to stem cells.

To overcome rejection of the stem cells by the body's immune system — in this case, rabbit immune systems — they first created a novel "capsule" derived from seaweed, which was used to surround and protect the rabbit stem cells from attack by the host's immune system. Within the seaweed capsule, they added X-ray contrast agents to allow the capsules to be seen on X-ray angiography. Next, they engineered the stem cells within the capsules to produce luciferase, the same bioluminescent chemical produced by fireflies, which is highly visible under bioluminescence imaging.

"Once we were able to trick the immune system into not attacking the cells, we had to know they arrived at their destination and were living," says Kraitchman. "We could use standard X-ray angiography of blood vessels to see the transplanted cells. When they lit up like fireflies at night, we knew they were still alive."

"Hopefully, this new technology will one day pave the way for treating humans," says Frank Wacker, M.D., director of vascular interventional radiology at Hopkins and visiting professor of radiology. "We look to the day when we will be able to perform targeted delivery of stem cell to treat PAD in patients who may be facing amputation or death."

Gary Stephenson | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

nachricht UK chemistry researchers develop catalyst that mimics the z-scheme of photosynthesis
26.06.2017 | University of Kentucky

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New 3-D model predicts best planting practices for farmers

26.06.2017 | Agricultural and Forestry Science

New research reveals impact of seismic surveys on zooplankton

26.06.2017 | Life Sciences

Correct connections are crucial

26.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>