Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seaweed and fireflies brew may guide stem cell treatment for peripheral artery disease

11.03.2009
An unlikely brew of seaweed and glow-in-the-dark biochemical agents may hold the key to the safe use of transplanted stem cells to treat patients with severe peripheral arterial disease (PAD), according to a team of veterinarians, basic scientists and interventional radiologists at Johns Hopkins.

In a preliminary "proof of concept" study in rabbits, Johns Hopkins scientists safely and successfully delivered therapeutic stem cells via intramuscular injections and then monitored the stem cells' viability once they reached their targets.

A report of the study by Johns Hopkins radiologists is scheduled for presentation at the Society of Interventional Radiology's 34th annual scientific meeting March 10.

Stem cells hold promise in treating PAD by reconstituting or increasing the number of blood vessels to replace or augment those choked off by plaque buildup. A chronic condition that can lead to amputations and even death, PAD is marked by vastly reduced circulation of blood in vessels feeding the legs and other "peripheral" body parts, and affects as many as 10 million Americans. Many cases can be treated with angioplasty or stents, similar to approaches used in coronary artery disease, but for some patients with extensive disease conventional treatment is not feasible, researchers say.

Among the technical hurdles to improving blood flow in such patients, according to Dara L. Kraitchman, V.M.D., Ph.D., associate professor of radiology at Johns Hopkins, is a means of telling doctors whether injected stem cells are staying alive and reaching the right targets to grow and develop into the needed new tissue.

This is critical, Kraitchman says, because the body's own immune defenses may recognize the potentially helpful donor stem cells as foreign invaders and try to destroy them, and also because traditional radioactive labeling agents, or tracers, which are normally used to track cells, can be toxic to stem cells.

To overcome rejection of the stem cells by the body's immune system — in this case, rabbit immune systems — they first created a novel "capsule" derived from seaweed, which was used to surround and protect the rabbit stem cells from attack by the host's immune system. Within the seaweed capsule, they added X-ray contrast agents to allow the capsules to be seen on X-ray angiography. Next, they engineered the stem cells within the capsules to produce luciferase, the same bioluminescent chemical produced by fireflies, which is highly visible under bioluminescence imaging.

"Once we were able to trick the immune system into not attacking the cells, we had to know they arrived at their destination and were living," says Kraitchman. "We could use standard X-ray angiography of blood vessels to see the transplanted cells. When they lit up like fireflies at night, we knew they were still alive."

"Hopefully, this new technology will one day pave the way for treating humans," says Frank Wacker, M.D., director of vascular interventional radiology at Hopkins and visiting professor of radiology. "We look to the day when we will be able to perform targeted delivery of stem cell to treat PAD in patients who may be facing amputation or death."

Gary Stephenson | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>