Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seaweed as biofuel? Metabolic engineering makes it a viable option

16.12.2010
Is red seaweed a viable future biofuel? Now that a University of Illinois metabolic engineer has developed a strain of yeast that can make short work of fermenting galactose, the answer is an unequivocal yes.

"When Americans think about biofuel crops, they think of corn, miscanthus, and switchgrass. ln small island or peninsular nations, though, the natural, obvious choice is marine biomass," said Yong-Su Jin, a U of I assistant professor of microbial genomics and a faculty member in its Institute for Genomic Biology.

Producers of biofuels made from terrestrial biomass crops have had difficulty breaking down recalcitrant fibers and extracting fermentable sugars. The harsh pretreatment processes used to release the sugars also resulted in toxic byproducts, inhibiting subsequent microbial fermentation, he said.

But marine biomass can be easily degraded to fermentable sugars, and production rates and range of distribution are higher than terrestrial biomass, he said.

"However, making biofuels from red seaweed has been problematic because the process yields both glucose and galactose, and until now galactose fermentation has been very inefficient," he said.

But Jin and his colleagues have recently identified three genes in Saccharomyces cerevisiae, the microbe most often used to ferment the sugars, whose overexpression increased galactose fermentation by 250 percent when compared to a control strain.

"This discovery greatly improves the economic viability of marine biofuels," he said.

Overexpression of one gene in particular, a truncated form of the TUP1 gene, sent galactose fermentation numbers soaring. The new strain consumed both sugars (glucose and galactose) almost three times faster than the control strain—8 versus 24 hours, he said.

"When we targeted this protein, the metabolic enzymes in galactose became very active. We can see that this gene is part of a regulating or controlling system," he said.

According to Jin, galactose is one of the most abundant sugars in marine biomass so its enhanced fermentation will be industrially useful for seaweed biofuel producers.

Marine biomass is an attractive renewable source for the production of biofuels for three reasons:

- production yields of marine plant biomass per unit area are much higher than those of terrestrial biomass

- marine biomass can be depolymerized relatively easily compared to other biomass crops because it does not contain recalcitrant lignin and cellulose crystalline structures

- the rate of carbon dioxide fixation by marine biomass is much higher than by terrestrial biomass, making it an appealing option for sequestration and recycling of carbon dioxide, he said.

The article will be published in Biotechnology and Bioengineering and is available pre-publication online at http://onlinelibrary.wiley.com/doi/10.1002/bit.22988/abstract .

Co-authors are Suk-Jin Ha of the U of I's Institute of Genomic Biology; Ki-Sung Lee, Min-Eui Hong, Suk-Chae Jung, and Dae-Hyuk Kweon of Sungkyunkwan University; Byoung Jo Yu, Hyun Min Koo, Sung-Min Park, and Jae Chan Park of the Samsung Advanced Institute of Technology; and Jin-Ho Seo of Seoul National University. Funding was provided by the Samsung Advanced Institute of Technology; the BioGreen 21 Program, Rural Development Administration, Republic of Korea; and the Korea Research Foundation.

Phyllis Picklesimer | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht The world's tiniest first responders
21.06.2018 | University of Southern California

nachricht A new toxin in Cholera bacteria discovered by scientists in Umeå
21.06.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>