Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Searching for purpose in proteins

01.11.2010
A small-molecule screening method helps scientists probe mysteries of protein function

As scientists continue to acquire immense amounts of genomic and biochemical data from various organisms, they routinely find themselves confronted by proteins of known structure but enigmatic function—and resolving those mysteries may require a chemical-based ‘fishing expedition’.

“The discovery of small molecules that bind to and disrupt the function of a specific target is an important step in chemical biology, especially for poorly characterized proteins,” explains Isao Miyazaki, a researcher with Hiroyuki Osada’s team at the RIKEN Advanced Science Institute in Wako. “We call these small molecules ‘bioprobes’.”

Recent work from Miyazaki and Osada demonstrates a highly effective strategy for identifying such bioprobes, which they have used to identify inhibitors of the human pirin protein1. Pirin is conserved across a diverse array of organisms, and has been tentatively linked to cancer malignancy in humans; however, little is known about how this protein might govern tumor progression.

The investigators produced glass slides containing a large array of small molecules, which they then treated with cellular extracts containing pirin protein fused to DsRed, a fluorescent tag. By identifying the spots selectively highlighted by the labeled protein, they were able to zoom in on a candidate molecule with apparently high specificity and binding affinity for pirin, which they named triphenyl compound A (TPh A).

High-resolution structural analysis demonstrated that TPh A inserts itself deeply within the pirin protein, and Miyazaki sees this as proof of the utility of their screening strategy. “There has been a question of whether ligands identified using chemical array approaches typically bind at shallow surfaces,” he says. “Our study confirms that chemical array methods can identify molecules that bind to buried pockets in proteins.”

Accordingly, TPh A appears to act as an effective functional inhibitor. Melanoma cells treated with this compound showed a marked reduction in cell migration, and this effect appears to arise from TPh A-mediated disruption of the interaction between pirin and the cancer-related protein Bcl3. By analyzing cellular gene expression profiles, the researchers subsequently uncovered evidence that pirin and Bcl3 collaborate to switch on the SNAI2 gene, which is known to contribute to tumor progression and metastatic growth.

These findings demonstrate the potential of bioprobe screening as a strategy for uncovering hidden protein functions. Miyazaki and Osada anticipate that TPh A will provide a valuable tool for future investigations of the role of pirin in other cancers and may even prove useful for studying related proteins from other organisms.

The corresponding author for this highlight is based at the Antibiotics Laboratory, RIKEN Advanced Science Institute

Journal information

1. Miyazaki, I., Simizu, S., Okumura, H., Takagi, S. & Osada, H. A small-molecule inhibitor shows that pirin regulates migration of melanoma cells. Nature Chemical Biology 6, 667–673 (2010).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6435
http://www.researchsea.com

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>