Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Searching for purpose in proteins

01.11.2010
A small-molecule screening method helps scientists probe mysteries of protein function

As scientists continue to acquire immense amounts of genomic and biochemical data from various organisms, they routinely find themselves confronted by proteins of known structure but enigmatic function—and resolving those mysteries may require a chemical-based ‘fishing expedition’.

“The discovery of small molecules that bind to and disrupt the function of a specific target is an important step in chemical biology, especially for poorly characterized proteins,” explains Isao Miyazaki, a researcher with Hiroyuki Osada’s team at the RIKEN Advanced Science Institute in Wako. “We call these small molecules ‘bioprobes’.”

Recent work from Miyazaki and Osada demonstrates a highly effective strategy for identifying such bioprobes, which they have used to identify inhibitors of the human pirin protein1. Pirin is conserved across a diverse array of organisms, and has been tentatively linked to cancer malignancy in humans; however, little is known about how this protein might govern tumor progression.

The investigators produced glass slides containing a large array of small molecules, which they then treated with cellular extracts containing pirin protein fused to DsRed, a fluorescent tag. By identifying the spots selectively highlighted by the labeled protein, they were able to zoom in on a candidate molecule with apparently high specificity and binding affinity for pirin, which they named triphenyl compound A (TPh A).

High-resolution structural analysis demonstrated that TPh A inserts itself deeply within the pirin protein, and Miyazaki sees this as proof of the utility of their screening strategy. “There has been a question of whether ligands identified using chemical array approaches typically bind at shallow surfaces,” he says. “Our study confirms that chemical array methods can identify molecules that bind to buried pockets in proteins.”

Accordingly, TPh A appears to act as an effective functional inhibitor. Melanoma cells treated with this compound showed a marked reduction in cell migration, and this effect appears to arise from TPh A-mediated disruption of the interaction between pirin and the cancer-related protein Bcl3. By analyzing cellular gene expression profiles, the researchers subsequently uncovered evidence that pirin and Bcl3 collaborate to switch on the SNAI2 gene, which is known to contribute to tumor progression and metastatic growth.

These findings demonstrate the potential of bioprobe screening as a strategy for uncovering hidden protein functions. Miyazaki and Osada anticipate that TPh A will provide a valuable tool for future investigations of the role of pirin in other cancers and may even prove useful for studying related proteins from other organisms.

The corresponding author for this highlight is based at the Antibiotics Laboratory, RIKEN Advanced Science Institute

Journal information

1. Miyazaki, I., Simizu, S., Okumura, H., Takagi, S. & Osada, H. A small-molecule inhibitor shows that pirin regulates migration of melanoma cells. Nature Chemical Biology 6, 667–673 (2010).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6435
http://www.researchsea.com

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>