Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Searching for Genes Behind a Trait

A method pioneered to find the genetic basis of human diseases also holds promise for locating the genes behind important traits in plants, according to a study published online March 24 by the journal Nature.

A large team led by biologists at the University of Southern California carried out what one author called “the first extensive use” of genome-wide association (GWA) in a plant species. The study located dozens of genes that may determine key traits such as flowering time and disease resistance.

The study broke new ground for two reasons: the authors studied natural variation of 107 different traits – a far higher number than in previous studies – in nearly 200 strains of a common weed collected from all over the world; and advances in genetic analysis enabled the authors to check the genome for mutations at many more points.

“The useful applications to agriculture, biofuel production and potentially changing and challenging plant growth conditions are vast,” said Susanna Atwell, a co-first author and postdoctoral researcher at the USC College of Letters, Arts and Sciences.

“This data set and methodology holds the potential to determine genes involved in natural variation in metabolite levels, biomass, flowering time, salt or heavy metal tolerance and disease resistance, to name but a few.”

In this study, the authors compared the genomes of up to 192 families of Arabidopsis thaliana, a plant widely studied by geneticists. The comparison took place at 250,000 pre-selected locations in the genome.

The comparison allowed the authors to identify parts of the genome that may contain genes responsible for observed variations in a given trait such as flowering time.

Since the comparison does not guarantee that a gene causes a particular trait, any genes identified through genome-wide association need to be tested further. Team members now are studying about 60 previously unknown genes to confirm their predicted function.

“GWA mapping is a faster method for locating causal genes as the genes are located to a smaller region than previous mapping techniques I have used,” Atwell said. “Our data set does a good job of locating previously known ones, so we have confidence that the novel genes that are also identified will also be real.”

Atwell expects the study to become a major resource for the community of geneticists working on A. thaliana, which numbers about 5,000 laboratories worldwide.

The Nature study culminates years of work by scientists led by senior author Magnus Nordborg, formerly of the molecular and computational biology department at USC College and now based at the Gregor Mendel Institute in Vienna, Austria.

“It’s been Magnus’ pet project for a very long time,” Atwell said.

Atwell’s co-first authors were her fellow postdoc Glenda Williams and USC graduate students Yu Huang and Bjarni Vilhjalmsson.

More than 30 other scientists contributed to the study, representing 10 institutions: the Keck School of Medicine of USC; the University of Chicago; Purdue University; the University of Sciences and Technologies in Lille, France; the Howard Hughes Medical Institute; The Salk Institute for Biological Studies; the John Innes Centre in Norwich, England; the Max Planck Institute in Cologne, Germany; Sainsbury Laboratory in Norwich; and the Max Planck Institute in Tubingen, Germany.

The National Science Foundation and the National Institutes of Health supported the research, with additional support from several institutions, agencies and foundations.

Carl Marziali | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Here comes the long-sought-after iron-munching microbe
25.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Novel method to benchmark and improve the performance of protein measumeasurement techniques
25.10.2016 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First-time reconstruction of infectious bat influenza viruses

25.10.2016 | Life Sciences

Novel method to benchmark and improve the performance of protein measumeasurement techniques

25.10.2016 | Life Sciences

Amazon rain helps make more rain

25.10.2016 | Life Sciences

More VideoLinks >>>