Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Searching for Genes Behind a Trait

26.03.2010
A method pioneered to find the genetic basis of human diseases also holds promise for locating the genes behind important traits in plants, according to a study published online March 24 by the journal Nature.

A large team led by biologists at the University of Southern California carried out what one author called “the first extensive use” of genome-wide association (GWA) in a plant species. The study located dozens of genes that may determine key traits such as flowering time and disease resistance.

The study broke new ground for two reasons: the authors studied natural variation of 107 different traits – a far higher number than in previous studies – in nearly 200 strains of a common weed collected from all over the world; and advances in genetic analysis enabled the authors to check the genome for mutations at many more points.

“The useful applications to agriculture, biofuel production and potentially changing and challenging plant growth conditions are vast,” said Susanna Atwell, a co-first author and postdoctoral researcher at the USC College of Letters, Arts and Sciences.

“This data set and methodology holds the potential to determine genes involved in natural variation in metabolite levels, biomass, flowering time, salt or heavy metal tolerance and disease resistance, to name but a few.”

In this study, the authors compared the genomes of up to 192 families of Arabidopsis thaliana, a plant widely studied by geneticists. The comparison took place at 250,000 pre-selected locations in the genome.

The comparison allowed the authors to identify parts of the genome that may contain genes responsible for observed variations in a given trait such as flowering time.

Since the comparison does not guarantee that a gene causes a particular trait, any genes identified through genome-wide association need to be tested further. Team members now are studying about 60 previously unknown genes to confirm their predicted function.

“GWA mapping is a faster method for locating causal genes as the genes are located to a smaller region than previous mapping techniques I have used,” Atwell said. “Our data set does a good job of locating previously known ones, so we have confidence that the novel genes that are also identified will also be real.”

Atwell expects the study to become a major resource for the community of geneticists working on A. thaliana, which numbers about 5,000 laboratories worldwide.

The Nature study culminates years of work by scientists led by senior author Magnus Nordborg, formerly of the molecular and computational biology department at USC College and now based at the Gregor Mendel Institute in Vienna, Austria.

“It’s been Magnus’ pet project for a very long time,” Atwell said.

Atwell’s co-first authors were her fellow postdoc Glenda Williams and USC graduate students Yu Huang and Bjarni Vilhjalmsson.

More than 30 other scientists contributed to the study, representing 10 institutions: the Keck School of Medicine of USC; the University of Chicago; Purdue University; the University of Sciences and Technologies in Lille, France; the Howard Hughes Medical Institute; The Salk Institute for Biological Studies; the John Innes Centre in Norwich, England; the Max Planck Institute in Cologne, Germany; Sainsbury Laboratory in Norwich; and the Max Planck Institute in Tubingen, Germany.

The National Science Foundation and the National Institutes of Health supported the research, with additional support from several institutions, agencies and foundations.

Carl Marziali | Newswise Science News
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>