Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The search for predictors of risk for PTSD

06.09.2011
Meaningful associations dependent on reliable measures of pre-existing trauma

Data in a study published in the Archives of General Psychiatry suggest that certain variants of a gene that helps regulate serotonin (a brain chemical related to mood), may serve as a useful predictor of risk for symptoms related to posttraumatic stress disorder (PTSD) following a trauma.

"One of the critical questions surrounding PTSD is why some individuals are at risk for developing the disorder following a trauma, while others appear to be relatively resilient," says lead author, Kerry J. Ressler, MD, PhD, Howard Hughes Medical Institute investigator and professor in the Department of Psychiatry and Behavioral Sciences at Emory University School of Medicine.

"It is known that genetic heritability is one component of the differential risk for PTSD, but the mechanisms remain relatively unknown."

In this study, the researchers were able to look at college students who had been interviewed for a study prior to a 2008 mass shooting on the Northern Illinois University campus, and then were interviewed afterward. The researchers used these prospective psychological data to examine the association between variants in the serotonin transporter gene promoter region of the brain, and PTSD/acute stress disorder symptoms that developed in the aftermath of exposure to the shooting.

"We believe that the strength of this study is the availability of the same validated survey measure to assess PTSD symptoms prior to and after a shared acute traumatic event," explains Ressler, who is also a researcher at the Yerkes National Primate Research Center at Emory.

The data suggest that differential function of the serotonin transporter may mediate differential response to a severe trauma. This is interesting because the gene product is the target for the first-line treatment for PTSD, the selective serotonin reuptake inhibitors (SSRIs). Additionally, variants in the gene have previously been shown to be associated with different risk for depression following life stress.

The researchers concluded that when examined in a relatively homogenous sample with shared trauma and known prior levels of child and adult trauma, this serotonin transporter genotype may serve as a useful predictor of risk for PTSD related symptoms in the weeks and months following trauma.

Importantly, notes Ressler, this is one of likely a number of genes that will ultimately be found to contribute to risk and resilience. As more of these gene pathways are understood, it is hoped that such findings will contribute to improved treatment and prevention as well as better prediction of risk for PTSD following traumatic exposure.

Other researchers involved in the study include Kristina B. Mercer, Howard Hughes Medical Institute and Emory University School of Medicine and Jeffrey F. Quinn, Caitlin A. Fitzgerald, Karen N. Conneely, Charles F. Gillespie, Emory University School of Medicine. Richard T. Barfield and Holly K. Orcutt are from Emory Rollins School of Public Health and Northern Illinois University respectively.

The research was funded by grants from the Joyce Foundation, the Burroughs Wellcome Fund, the National Institute of Child Health and Human Development and the National Institute of Mental Health.

The Robert W. Woodruff Health Sciences Center of Emory University is a non-for-profit academic institution that focuses on teaching, ...

Kathi Baker | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>