Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The search for predictors of risk for PTSD

Meaningful associations dependent on reliable measures of pre-existing trauma

Data in a study published in the Archives of General Psychiatry suggest that certain variants of a gene that helps regulate serotonin (a brain chemical related to mood), may serve as a useful predictor of risk for symptoms related to posttraumatic stress disorder (PTSD) following a trauma.

"One of the critical questions surrounding PTSD is why some individuals are at risk for developing the disorder following a trauma, while others appear to be relatively resilient," says lead author, Kerry J. Ressler, MD, PhD, Howard Hughes Medical Institute investigator and professor in the Department of Psychiatry and Behavioral Sciences at Emory University School of Medicine.

"It is known that genetic heritability is one component of the differential risk for PTSD, but the mechanisms remain relatively unknown."

In this study, the researchers were able to look at college students who had been interviewed for a study prior to a 2008 mass shooting on the Northern Illinois University campus, and then were interviewed afterward. The researchers used these prospective psychological data to examine the association between variants in the serotonin transporter gene promoter region of the brain, and PTSD/acute stress disorder symptoms that developed in the aftermath of exposure to the shooting.

"We believe that the strength of this study is the availability of the same validated survey measure to assess PTSD symptoms prior to and after a shared acute traumatic event," explains Ressler, who is also a researcher at the Yerkes National Primate Research Center at Emory.

The data suggest that differential function of the serotonin transporter may mediate differential response to a severe trauma. This is interesting because the gene product is the target for the first-line treatment for PTSD, the selective serotonin reuptake inhibitors (SSRIs). Additionally, variants in the gene have previously been shown to be associated with different risk for depression following life stress.

The researchers concluded that when examined in a relatively homogenous sample with shared trauma and known prior levels of child and adult trauma, this serotonin transporter genotype may serve as a useful predictor of risk for PTSD related symptoms in the weeks and months following trauma.

Importantly, notes Ressler, this is one of likely a number of genes that will ultimately be found to contribute to risk and resilience. As more of these gene pathways are understood, it is hoped that such findings will contribute to improved treatment and prevention as well as better prediction of risk for PTSD following traumatic exposure.

Other researchers involved in the study include Kristina B. Mercer, Howard Hughes Medical Institute and Emory University School of Medicine and Jeffrey F. Quinn, Caitlin A. Fitzgerald, Karen N. Conneely, Charles F. Gillespie, Emory University School of Medicine. Richard T. Barfield and Holly K. Orcutt are from Emory Rollins School of Public Health and Northern Illinois University respectively.

The research was funded by grants from the Joyce Foundation, the Burroughs Wellcome Fund, the National Institute of Child Health and Human Development and the National Institute of Mental Health.

The Robert W. Woodruff Health Sciences Center of Emory University is a non-for-profit academic institution that focuses on teaching, ...

Kathi Baker | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>