Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Search for biomarkers aimed at improving treatment of painful bladder condition

12.08.2014

Taking advantage of technology that can analyze tissue samples and measure the activity of thousands of genes at once, scientists at Wake Forest Baptist Medical Center are on a mission to better understand and treat interstitial cystitis (IC), a painful and difficult-to-diagnose bladder condition.

"We are looking for molecular biomarkers for IC, which basically means we are comparing bladder biopsy tissue from patients with suspected interstitial cystitis to patients without the disease. The goal is to identify factors that will lead to a more definitive diagnosis, and then use this information to tailor treatments to the patient," said senior author Stephen J. Walker, Ph.D., associate professor at Wake Forest Baptist's Institute for Regenerative Medicine.

The team's initial work, published online ahead of print in the Journal of Urology, found that tissue from IC patients with low bladder capacity had a significantly different gene expression profile than both IC patients with normal bladder capacity and study participants without IC. The findings suggest there may be a sub-type of IC.

"This is the first study to document functional genomic variation based solely on bladder capacity," said Robert J. Evans, M.D., a co-author and IC specialist in Wake Forest Baptist Urology. "Interstitial cystitis is notoriously difficult to diagnose. In fact, one report found that it takes the average patient eight years and seeing five doctors to be correctly diagnosed. The identification of biomarkers to improve diagnosis or treatment would be a significant breakthrough for patients and physicians."

IC, also known as bladder pain syndrome, is a condition in which the bladder lining is tender and easily irritated. Symptoms can include severe pelvic pain, urinary urgency and frequency and painful sexual intercourse. IC is often misdiagnosed as other conditions such as endometriosis, kidney stones or chronic urinary tract infections. The condition affects an estimated three to eight million women and one to four million men in the United States.

For the study, researchers analyzed bladder biopsies from 13 patients diagnosed with IC and three patients without the condition. The biopsies were sorted into three groups: low bladder capacity (less than 13 fluid ounces as tested under anesthesia); bladder capacity above 13 ounces; and non-IC patients. Using microarray analysis, which allows gene expression profiling on a "whole genome" scale, the researchers looked for similarities and differences in gene expression between groups. The analysis tells researchers which genes are turned "on" and which are turned "off."

The results showed a highly significant difference between low capacity patients and both the normal capacity and control patients. The low capacity patients had genes related to inflammation and immune signaling turned "on." The results may reflect a fundamental difference in disease processes.

"These gene expression differences may explain why clinical trials for IC are so variable in effectiveness and have a large number of non-responders," said Evans. "There may be subtypes of the disease that respond best to particular treatments."

Based on these early results, the team is conducting further research with the aim of identifying and validating a biomarker to aid in diagnosis and treatment of IC.

"Diseases are rarely seen as single entities anymore," said Walker. "Patients demonstrating a specific disease subtype may respond more quickly and or more favorably to treatments that target that specific subtype. Having the ability to identify the right treatment for the right patient is the ultimate goal."

###

This pilot research was supported by funds from the Department of Urology. Because of the promise of the data, the Interstitial Cystitis Association has awarded funding for further research.

Co-researchers were: Marc Colaco, M.D., David S. Koslov, M.D., Tristan Keys, M.D., Gopal H. Badlani, M.D., and Karl-Erik Andersson, M.D., Ph.D., all with Wake Forest Baptist.

Media Contacts: Karen Richardson, krchrdsn@wakehealth.edu, (336) 716-4453) or Main Number (336) 716-4587.

Wake Forest Baptist Medical Center is a nationally recognized academic medical center in Winston-Salem, N.C., with an integrated enterprise including educational and research facilities, hospitals, clinics, diagnostic centers and other primary and specialty care facilities serving 24 counties in northwest North Carolina and southwest Virginia. Its divisions are Wake Forest Baptist Health, a regional clinical system with close to 175 locations, 900 physicians and 1,000 acute care beds; Wake Forest School of Medicine, an established leader in medical education and research; and Wake Forest Innovations, which promotes the commercialization of research discoveries and operates Wake Forest Innovation Quarter, an urban research and business park specializing in biotechnology, materials science and information technology. Wake Forest Baptist clinical, research and educational programs are annually ranked among the best in the country by U.S. News & World Report.

Karen Richardson | Eurek Alert!

Further reports about: IC Medical Medicine biomarkers bladder biopsy diagnosis

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>