Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Search for biomarkers aimed at improving treatment of painful bladder condition

12.08.2014

Taking advantage of technology that can analyze tissue samples and measure the activity of thousands of genes at once, scientists at Wake Forest Baptist Medical Center are on a mission to better understand and treat interstitial cystitis (IC), a painful and difficult-to-diagnose bladder condition.

"We are looking for molecular biomarkers for IC, which basically means we are comparing bladder biopsy tissue from patients with suspected interstitial cystitis to patients without the disease. The goal is to identify factors that will lead to a more definitive diagnosis, and then use this information to tailor treatments to the patient," said senior author Stephen J. Walker, Ph.D., associate professor at Wake Forest Baptist's Institute for Regenerative Medicine.

The team's initial work, published online ahead of print in the Journal of Urology, found that tissue from IC patients with low bladder capacity had a significantly different gene expression profile than both IC patients with normal bladder capacity and study participants without IC. The findings suggest there may be a sub-type of IC.

"This is the first study to document functional genomic variation based solely on bladder capacity," said Robert J. Evans, M.D., a co-author and IC specialist in Wake Forest Baptist Urology. "Interstitial cystitis is notoriously difficult to diagnose. In fact, one report found that it takes the average patient eight years and seeing five doctors to be correctly diagnosed. The identification of biomarkers to improve diagnosis or treatment would be a significant breakthrough for patients and physicians."

IC, also known as bladder pain syndrome, is a condition in which the bladder lining is tender and easily irritated. Symptoms can include severe pelvic pain, urinary urgency and frequency and painful sexual intercourse. IC is often misdiagnosed as other conditions such as endometriosis, kidney stones or chronic urinary tract infections. The condition affects an estimated three to eight million women and one to four million men in the United States.

For the study, researchers analyzed bladder biopsies from 13 patients diagnosed with IC and three patients without the condition. The biopsies were sorted into three groups: low bladder capacity (less than 13 fluid ounces as tested under anesthesia); bladder capacity above 13 ounces; and non-IC patients. Using microarray analysis, which allows gene expression profiling on a "whole genome" scale, the researchers looked for similarities and differences in gene expression between groups. The analysis tells researchers which genes are turned "on" and which are turned "off."

The results showed a highly significant difference between low capacity patients and both the normal capacity and control patients. The low capacity patients had genes related to inflammation and immune signaling turned "on." The results may reflect a fundamental difference in disease processes.

"These gene expression differences may explain why clinical trials for IC are so variable in effectiveness and have a large number of non-responders," said Evans. "There may be subtypes of the disease that respond best to particular treatments."

Based on these early results, the team is conducting further research with the aim of identifying and validating a biomarker to aid in diagnosis and treatment of IC.

"Diseases are rarely seen as single entities anymore," said Walker. "Patients demonstrating a specific disease subtype may respond more quickly and or more favorably to treatments that target that specific subtype. Having the ability to identify the right treatment for the right patient is the ultimate goal."

###

This pilot research was supported by funds from the Department of Urology. Because of the promise of the data, the Interstitial Cystitis Association has awarded funding for further research.

Co-researchers were: Marc Colaco, M.D., David S. Koslov, M.D., Tristan Keys, M.D., Gopal H. Badlani, M.D., and Karl-Erik Andersson, M.D., Ph.D., all with Wake Forest Baptist.

Media Contacts: Karen Richardson, krchrdsn@wakehealth.edu, (336) 716-4453) or Main Number (336) 716-4587.

Wake Forest Baptist Medical Center is a nationally recognized academic medical center in Winston-Salem, N.C., with an integrated enterprise including educational and research facilities, hospitals, clinics, diagnostic centers and other primary and specialty care facilities serving 24 counties in northwest North Carolina and southwest Virginia. Its divisions are Wake Forest Baptist Health, a regional clinical system with close to 175 locations, 900 physicians and 1,000 acute care beds; Wake Forest School of Medicine, an established leader in medical education and research; and Wake Forest Innovations, which promotes the commercialization of research discoveries and operates Wake Forest Innovation Quarter, an urban research and business park specializing in biotechnology, materials science and information technology. Wake Forest Baptist clinical, research and educational programs are annually ranked among the best in the country by U.S. News & World Report.

Karen Richardson | Eurek Alert!

Further reports about: IC Medical Medicine biomarkers bladder biopsy diagnosis

More articles from Life Sciences:

nachricht Identifying drug targets for leukaemia
02.05.2016 | The Hong Kong Polytechnic University

nachricht A cell senses its own curves: New research from the MBL Whitman Center
29.04.2016 | Marine Biological Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Identifying drug targets for leukaemia

02.05.2016 | Life Sciences

Clay nanotube-biopolymer composite scaffolds for tissue engineering

02.05.2016 | Materials Sciences

NASA's Fermi Telescope helps link cosmic neutrino to blazar blast

02.05.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>