Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Seals sense shapes using their whiskers to feel wakes

Hunting in the North Sea, harbour seals often encounter murky water that impedes their vision; but it doesn't affect their ability to chase prey.

Extending their vibration-sensitive whiskers, the mammals are almost as efficient at pursuing their quarry as they would be if guided by sight. Wolf Hanke and his colleagues from the University of Rostock, Germany, are fascinated by how harbour seals perceive the world through their flow-sensitive vibrissae.

Having already found that seals can pick up and follow fish wakes up to 35 seconds after the prey has passed and knowing that a fish's size and shape can dramatically affect its wake structure, graduate student Sven Wieskotten decided to find out how well seals can distinguish between the wakes of objects with different shapes and sizes. The team publishes their discovery that harbour seals can detect differences in the wakes generated by differently shaped objects using only their whiskers in The Journal of Experimental Biology at

Teaming up with Henry the harbour seal at the Marine Science Centre, Germany, Hanke, Wieskotten and their colleagues, Lars Miersch and Guido Dehnhardt, began testing Henry's ability to distinguish between the wakes of differently sized paddles. The researchers blindfolded Henry and covered his ears, then they swept a paddle through a large box in Henry's enclosure and allowed him to enter it 3ƒn seconds later. Having trained Henry to press a target outside the enclosure when he recognised the wake of a standard paddle and to press a different target when he recognised the wake from a larger or smaller paddle, the team found that Henry could distinguish between paddles that differed by as little as 2.8cm in width.

Then, the team tested which aspects of the wake the seal picked up on. 'We randomised the speeds of the paddles so that the maximum flow velocity wasn't a distinguishing cue for the widest paddles, but the structure of the wake had to be recognised by the seal and he could do that too, but with slightly less accuracy,' remembers Hanke.

Next, the team varied the paddle shapes and asked Henry to distinguish between the wakes of triangular, cylindrical, flat and undulating paddles. The seal successfully distinguished between the flat and cylindrical paddles, the flat and undulating paddles and the undulating and cylindrical paddles after they were swept through the enclosure. However, he had problems distinguishing the triangular paddle from the undulating or cylindrical shapes.

Having found that Henry can distinguish between the wakes of different passing objects and investigated the structure of each paddle's wake with digital particle image velocimetry, Hanke says, 'It is difficult to tell which part of the wake serves the animal most and which aided only a little.' So, Hanke is keen to test Henry's responses to single vortices to find out which wake components might give a fish's size and shape away. He explains that hunting seals have to optimise the amount of energy that they ingest while hunting so, if a seal can distinguish between small skinny fish ¡V which cost too much to pursue ¡V and the perfect lunch based on their wakes alone, that could improve its hunting efficiency enormously.


REFERENCE: Wieskotten, S., Mauck, B., Miersch, L., Dehnhardt, G. and Hanke, W. (2011). Hydrodynamic discrimination of wakes caused by objects of different size or shape in a harbour seal (Phoca vitulina). J. Exp. Biol. 214, 1922-1930.

Kathryn Knight | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>