Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seals sense shapes using their whiskers to feel wakes

12.05.2011
Hunting in the North Sea, harbour seals often encounter murky water that impedes their vision; but it doesn't affect their ability to chase prey.

Extending their vibration-sensitive whiskers, the mammals are almost as efficient at pursuing their quarry as they would be if guided by sight. Wolf Hanke and his colleagues from the University of Rostock, Germany, are fascinated by how harbour seals perceive the world through their flow-sensitive vibrissae.

Having already found that seals can pick up and follow fish wakes up to 35 seconds after the prey has passed and knowing that a fish's size and shape can dramatically affect its wake structure, graduate student Sven Wieskotten decided to find out how well seals can distinguish between the wakes of objects with different shapes and sizes. The team publishes their discovery that harbour seals can detect differences in the wakes generated by differently shaped objects using only their whiskers in The Journal of Experimental Biology at http://jeb.biologists.org/content/214/11/1922.abstract

Teaming up with Henry the harbour seal at the Marine Science Centre, Germany, Hanke, Wieskotten and their colleagues, Lars Miersch and Guido Dehnhardt, began testing Henry's ability to distinguish between the wakes of differently sized paddles. The researchers blindfolded Henry and covered his ears, then they swept a paddle through a large box in Henry's enclosure and allowed him to enter it 3ƒn seconds later. Having trained Henry to press a target outside the enclosure when he recognised the wake of a standard paddle and to press a different target when he recognised the wake from a larger or smaller paddle, the team found that Henry could distinguish between paddles that differed by as little as 2.8cm in width.

Then, the team tested which aspects of the wake the seal picked up on. 'We randomised the speeds of the paddles so that the maximum flow velocity wasn't a distinguishing cue for the widest paddles, but the structure of the wake had to be recognised by the seal and he could do that too, but with slightly less accuracy,' remembers Hanke.

Next, the team varied the paddle shapes and asked Henry to distinguish between the wakes of triangular, cylindrical, flat and undulating paddles. The seal successfully distinguished between the flat and cylindrical paddles, the flat and undulating paddles and the undulating and cylindrical paddles after they were swept through the enclosure. However, he had problems distinguishing the triangular paddle from the undulating or cylindrical shapes.

Having found that Henry can distinguish between the wakes of different passing objects and investigated the structure of each paddle's wake with digital particle image velocimetry, Hanke says, 'It is difficult to tell which part of the wake serves the animal most and which aided only a little.' So, Hanke is keen to test Henry's responses to single vortices to find out which wake components might give a fish's size and shape away. He explains that hunting seals have to optimise the amount of energy that they ingest while hunting so, if a seal can distinguish between small skinny fish ¡V which cost too much to pursue ¡V and the perfect lunch based on their wakes alone, that could improve its hunting efficiency enormously.

IF REPORTING ON THIS STORY, PLEASE MENTION THE JOURNAL OF EXPERIMENTAL BIOLOGY AS THE SOURCE AND, IF REPORTING ONLINE, PLEASE CARRY A LINK TO: http://jeb.biologists.org

REFERENCE: Wieskotten, S., Mauck, B., Miersch, L., Dehnhardt, G. and Hanke, W. (2011). Hydrodynamic discrimination of wakes caused by objects of different size or shape in a harbour seal (Phoca vitulina). J. Exp. Biol. 214, 1922-1930.

Kathryn Knight | EurekAlert!
Further information:
http://www.biologists.com
http://jeb.biologists.org

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>