Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sealed off

11.01.2010
The cerebral ventricles filled with fluid act like shock absorbers, protecting the brain against damage from concussion or blows.

Researchers of the Max Delbrück Center (MDC) and the Leibniz Institute for Molecular Pharmacology (FMP) in Berlin-Buch, have now demonstrated how these brain ventricles develop prior to the establishment of the blood-brain barrier in zebrafish.

One specific protein (Claudin5a) is decisive for this development. It forms a barrier between the nervous tissue and the ventricles. If it is absent, the ventricles cannot expand and the brain morphogenesis of the animals is disrupted. These insights could be used to test the penetrability of drugs into the brain. (PNAS).

Like the blood-brain barrier, which prevents pathogens from penetrating into the brain via the blood, the brain ventricles are also isolated from their surroundings by a cerebral-ventricular barrier. Thus, the ventricles can fill with fluid, expand and in this way contribute to the stability of the brain. In contrast to the blood-brain barrier, the cerebral-ventricular barrier does not contain any blood vessels, but rather consists exclusively of neurons interwoven with each other via protein filaments. One component of these tightly woven filaments, the tight junctions, is the protein Claudin5a.

Jingjing Zhang of the research group of Dr. Salim Seyfried (MDC) and scientists belonging to the research group of Dr. Ingolf E. Blasig (FMP) have now for the first time identified the function of this protein during an early stage of zebrafish development. Their experiments revealed that the ventricles did not expand when Claudin5a was absent. The consequence - the brain morphology was altered. However, when the scientists re-established the function of Claudin5a by switching Claudin5a on in the entire embryo, the brain ventricles were able to expand again.

Dr. Seyfried is convinced that these findings on barrier tightness by Claudin5a could also be useful for pharmacological research. Drugs hardly ever penetrate the blood-brain barrier, which makes treatment of brain diseases difficult. "Further studies on zebrafish could help to identify substances that switch off the function of Claudin5a for a short time and thus contribute to the opening of brain barriers such as the blood-brain barrier. This could be significant for the development of drugs intended to unfold their effect in the brain."

* Establishment of a neuroepithelial barrier by Claudin5a is essential for zebrafish brain ventricular lumen expansion
Jingjing Zhang1, Jörg Piontek2, Hartwig Wolburg3, Christian Piehl2, Martin Liss1,2, Cécile Otten1, Annabel Christ1, Thomas E. Willnow1, Ingolf E. Blasig2,# and Salim Abdelilah-Seyfried1,#
1Max Delbrück Center (MDC) for Molecular Medicine, Robert-Rössle Str. 10, D-13125 Berlin, Germany
2Leibniz Institute for Molecular Pharmacology, Robert-Rössle Str. 10, D-13125 Berlin, Germany
3Institute of Pathology, University of Tübingen, Liebermeisterstr. 8, D-72076 Tübingen, Germany

#Corresponding authors

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>