Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sealed off

11.01.2010
The cerebral ventricles filled with fluid act like shock absorbers, protecting the brain against damage from concussion or blows.

Researchers of the Max Delbrück Center (MDC) and the Leibniz Institute for Molecular Pharmacology (FMP) in Berlin-Buch, have now demonstrated how these brain ventricles develop prior to the establishment of the blood-brain barrier in zebrafish.

One specific protein (Claudin5a) is decisive for this development. It forms a barrier between the nervous tissue and the ventricles. If it is absent, the ventricles cannot expand and the brain morphogenesis of the animals is disrupted. These insights could be used to test the penetrability of drugs into the brain. (PNAS).

Like the blood-brain barrier, which prevents pathogens from penetrating into the brain via the blood, the brain ventricles are also isolated from their surroundings by a cerebral-ventricular barrier. Thus, the ventricles can fill with fluid, expand and in this way contribute to the stability of the brain. In contrast to the blood-brain barrier, the cerebral-ventricular barrier does not contain any blood vessels, but rather consists exclusively of neurons interwoven with each other via protein filaments. One component of these tightly woven filaments, the tight junctions, is the protein Claudin5a.

Jingjing Zhang of the research group of Dr. Salim Seyfried (MDC) and scientists belonging to the research group of Dr. Ingolf E. Blasig (FMP) have now for the first time identified the function of this protein during an early stage of zebrafish development. Their experiments revealed that the ventricles did not expand when Claudin5a was absent. The consequence - the brain morphology was altered. However, when the scientists re-established the function of Claudin5a by switching Claudin5a on in the entire embryo, the brain ventricles were able to expand again.

Dr. Seyfried is convinced that these findings on barrier tightness by Claudin5a could also be useful for pharmacological research. Drugs hardly ever penetrate the blood-brain barrier, which makes treatment of brain diseases difficult. "Further studies on zebrafish could help to identify substances that switch off the function of Claudin5a for a short time and thus contribute to the opening of brain barriers such as the blood-brain barrier. This could be significant for the development of drugs intended to unfold their effect in the brain."

* Establishment of a neuroepithelial barrier by Claudin5a is essential for zebrafish brain ventricular lumen expansion
Jingjing Zhang1, Jörg Piontek2, Hartwig Wolburg3, Christian Piehl2, Martin Liss1,2, Cécile Otten1, Annabel Christ1, Thomas E. Willnow1, Ingolf E. Blasig2,# and Salim Abdelilah-Seyfried1,#
1Max Delbrück Center (MDC) for Molecular Medicine, Robert-Rössle Str. 10, D-13125 Berlin, Germany
2Leibniz Institute for Molecular Pharmacology, Robert-Rössle Str. 10, D-13125 Berlin, Germany
3Institute of Pathology, University of Tübingen, Liebermeisterstr. 8, D-72076 Tübingen, Germany

#Corresponding authors

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>