Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seahorse heads have a 'no wake zone' that's made for catching prey

27.11.2013
Seahorses are slow, docile creatures, but their heads are perfectly shaped to sneak up and quickly snatch prey, according to marine scientists from The University of Texas at Austin.

"A seahorse is one the slowest swimming fish that we know of, but it's able to capture prey that swim at incredible speeds for their size," said Brad Gemmell, research associate at the University of Texas Marine Science Institute, which is part of the College of Natural Sciences.


The dwarf seahorse, Hippocampus zosterae, has a head perfectly shaped to sneak up on fast moving copepods.

Credit: Brad Gemmell

The prey, in this case, are copepods. Copepods are extremely small crustaceans that are a critical component of the marine food web. They are a favored meal of seahorses, pipefish and sea dragons, all of which are uniquely shaped fish in the syngnathid family.

Copepods escape predators when they detect waves produced in advance of an attack, and they can jolt away at speeds of more than 500 body lengths per second. That equates to a 6-foot person swimming under water at 2,000 mph.

"Seahorses have the capability to overcome the sensory abilities of one of the most talented escape artists in the aquatic world — copepods," said Gemmell. "People often don't think of seahorses as amazing predators, but they really are."

In calm conditions, seahorses are the best at capturing prey of any fish tested. They catch their intended prey 90 percent of the time. "That's extremely high," said Gemmell, "and we wanted to know why."

For their study, Gemmell and his colleague Ed Buskey, professor of marine science, turned to the dwarf seahorse, Hippocampus zosterae, which is native to the Bahamas and the U.S. To observe the seahorses and the copepods in action, they used high-speed digital 3-D holography techniques developed by mechanical engineer Jian Sheng at Texas Tech University. The technique uses a microscope outfitted with a laser and a high-speed digital camera to catch the rapid movements of microscopic animals moving in and out of focus in a 3-D volume of liquid.

The holography technique revealed that the seahorse's head is shaped to minimize the disturbance of water in front of its mouth before it strikes. Just above and in front of the seahorse's nostrils is a kind of "no wake zone," and the seahorse angles its head precisely in relation to its prey so that no fluid disturbance reaches it.

Other small fish with blunter heads, such as the three-spine stickleback, have no such advantage.

Gemmell said that the unique head shape of seahorses and their kin likely evolved partly in response to pressures to catch their prey. Individuals that could get very close to prey without generating an escape response would be more successful in the long term.

"It's like an arms race between predator and prey, and the seahorse has developed a good method for getting close enough so that their striking distance is very short," he said.

Seahorses feed by a method known as pivot feeding. They rapidly rotate their heads upward and draw the prey in with suction. The suction only works at short distances; the effective strike range for seahorses is about 1 millimeter. And a strike happens in less than 1 millisecond. Copepods can respond to predator movements in 2 to 3 milliseconds — faster than almost anything known, but not fast enough to escape the strike of the seahorse.

Once a copepod is within range of a seahorse, which is effectively cloaked by its head shape, the copepod has no chance.

Gemmell said that being able to unravel these interactions between small fish and tiny copepods is important because of the role that copepods play in larger ecosystem food webs. They are a major source of energy and anchor of the marine food web, and what affects copepods eventually affects humans, which are sitting near the top of the web, eating the larger fish that also depend on copepods.

Gemmell, Buskey and Sheng published their research this week in Nature Communications.

Watch a video: http://youtu.be/_tHJdoqXnqI

Additional contact: Ed Buskey, University of Texas Marine Science Institute, 361-749-3102, ed.buskey@utexas.edu

Brad Gemmell | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>