Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Seabird bones reveal changes in open-ocean food chain

Remains of endangered Hawaiian petrels – both ancient and modern – show how drastically today’s open seas fish menu has changed.
A research team, led by Michigan State University and Smithsonian Institution scientists, analyzed the bones of Hawaiian petrels – birds that spend the majority of their lives foraging the open waters of the Pacific. They found that the substantial change in petrels’ eating habits, eating prey that are lower rather than higher in the food chain, coincides with the growth of industrialized fishing.

The birds’ dramatic shift in diet, shown in the current issue of the Proceedings of the National Academy of Sciences, leaves scientists pondering the fate of petrels as well as wondering how many other species face similar challenges.

“Our bone record is alarming because it suggests that open-ocean food webs are changing on a large scale due to human influence,” said Peggy Ostrom, co-author and MSU zoologist. “Our study is among the first to address one of the great mysteries of biological oceanography – whether fishing has gone beyond an influence on targeted species to affect nontarget species and potentially, entire food webs in the open ocean.”

Hawaiian petrels’ diet is recorded in the chemistry of their bones. By studying the bones’ ratio of nitrogen-15 and nitrogen-14 isotopes, researchers can tell at what level in the food chain the birds are feasting; generally, the larger the isotope ratio, the bigger the prey (fish, squid and crustaceans).

Between 4,000 and 100 years ago, petrels had high isotope ratios, indicating they ate bigger prey. After the onset of industrial fishing, which began extending past the continental shelves around 1950, the isotope ratios declined, indicating a species-wide shift to a diet of smaller fish and other prey.

Much research has focused on the impact of fishing near the coasts. In contrast, the open ocean covers nearly half of the Earth’s surface. But due to a lack of historical records, fishing’s impact on most open-ocean animal populations is completely unknown, said lead author Anne Wiley, formerly an MSU doctoral student and now a Smithsonian postdoctoral researcher.

“Hawaiian petrels spend the majority of their lives foraging over vast expanses of open ocean,” she said. “In their search for food, they’ve done what scientists can only dream of. For thousands of years, they’ve captured a variety of fish, squid and crustaceans from a large portion of the North Pacific Ocean, and a record of their diet is preserved in their bones.”

Addressing fishery impact through a chronology of bones is remarkable. Most marine animals die at sea, where their bones are buried on the ocean bottom. But after three decades of fossil collection in the Hawaiian Islands – the breeding grounds of the Hawaiian petrel – co-author Helen James of the Smithsonian Institution and her colleagues have amassed a collection of more than 17,000 ancient Hawaiian petrel bones.

“The petrels breed in burrows and caves where, if they die, their bones are likely to be preserved for a long time,” James said. “It’s fortuitous to find such a rich bone record for a rare oceanic predator.”

Further studies are needed to explore how the shift down the food chain is affecting Hawaiian petrels. For a coastal seabird, however, a similar shift in diet has been associated with decreases in population – bad news for a federally protected bird.

Since petrels exploit fishing grounds from the equator to near the Aleutian Islands – an area larger than the continental United States – their foraging habits are quite telling. If petrels, signal flares for open-ocean food webs, have had a species-wide change in feeding habits, how many other predators around the world has fishing impacted? And what role do consumers play?

“What you choose to put on your dinner plate – that’s your connection with the endangered Hawaiian petrel, and with many other marine species,” Wiley said.

The research was funded by the National Science Foundation, MSU and the Smithsonian Institution.

Layne Cameron | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>