Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seabird bones reveal changes in open-ocean food chain

14.05.2013
Remains of endangered Hawaiian petrels – both ancient and modern – show how drastically today’s open seas fish menu has changed.
A research team, led by Michigan State University and Smithsonian Institution scientists, analyzed the bones of Hawaiian petrels – birds that spend the majority of their lives foraging the open waters of the Pacific. They found that the substantial change in petrels’ eating habits, eating prey that are lower rather than higher in the food chain, coincides with the growth of industrialized fishing.

The birds’ dramatic shift in diet, shown in the current issue of the Proceedings of the National Academy of Sciences, leaves scientists pondering the fate of petrels as well as wondering how many other species face similar challenges.

“Our bone record is alarming because it suggests that open-ocean food webs are changing on a large scale due to human influence,” said Peggy Ostrom, co-author and MSU zoologist. “Our study is among the first to address one of the great mysteries of biological oceanography – whether fishing has gone beyond an influence on targeted species to affect nontarget species and potentially, entire food webs in the open ocean.”

Hawaiian petrels’ diet is recorded in the chemistry of their bones. By studying the bones’ ratio of nitrogen-15 and nitrogen-14 isotopes, researchers can tell at what level in the food chain the birds are feasting; generally, the larger the isotope ratio, the bigger the prey (fish, squid and crustaceans).

Between 4,000 and 100 years ago, petrels had high isotope ratios, indicating they ate bigger prey. After the onset of industrial fishing, which began extending past the continental shelves around 1950, the isotope ratios declined, indicating a species-wide shift to a diet of smaller fish and other prey.

Much research has focused on the impact of fishing near the coasts. In contrast, the open ocean covers nearly half of the Earth’s surface. But due to a lack of historical records, fishing’s impact on most open-ocean animal populations is completely unknown, said lead author Anne Wiley, formerly an MSU doctoral student and now a Smithsonian postdoctoral researcher.

“Hawaiian petrels spend the majority of their lives foraging over vast expanses of open ocean,” she said. “In their search for food, they’ve done what scientists can only dream of. For thousands of years, they’ve captured a variety of fish, squid and crustaceans from a large portion of the North Pacific Ocean, and a record of their diet is preserved in their bones.”

Addressing fishery impact through a chronology of bones is remarkable. Most marine animals die at sea, where their bones are buried on the ocean bottom. But after three decades of fossil collection in the Hawaiian Islands – the breeding grounds of the Hawaiian petrel – co-author Helen James of the Smithsonian Institution and her colleagues have amassed a collection of more than 17,000 ancient Hawaiian petrel bones.

“The petrels breed in burrows and caves where, if they die, their bones are likely to be preserved for a long time,” James said. “It’s fortuitous to find such a rich bone record for a rare oceanic predator.”

Further studies are needed to explore how the shift down the food chain is affecting Hawaiian petrels. For a coastal seabird, however, a similar shift in diet has been associated with decreases in population – bad news for a federally protected bird.

Since petrels exploit fishing grounds from the equator to near the Aleutian Islands – an area larger than the continental United States – their foraging habits are quite telling. If petrels, signal flares for open-ocean food webs, have had a species-wide change in feeding habits, how many other predators around the world has fishing impacted? And what role do consumers play?

“What you choose to put on your dinner plate – that’s your connection with the endangered Hawaiian petrel, and with many other marine species,” Wiley said.

The research was funded by the National Science Foundation, MSU and the Smithsonian Institution.

Layne Cameron | EurekAlert!
Further information:
http://www.msu.edu
http://www.msutoday.msu.edu/news/2013/seabird-bones-reveal-changes-in-open-ocean-food-chain/

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>