Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sea urchins see with their whole body

30.06.2011
Many animals have eyes that are incredibly complex – others manage without. Researchers at the University of Gothenburg have shown that sea urchins see with their entire body despite having no eyes at all. The study has been published in the scientific journal Proceedings of the National Academy of Sciences (PNAS).

Most animals react to light and have developed a very sophisticated way of seeing complex images so that they can function in their surroundings. Good examples include insects’ compound eyes and the human eye. Charles Darwin and other evolutionary biologists were bewildered by the eye’s complexity and wondered how this kind of structure could have evolved through natural selection.

But some creatures, such as sea urchins, can react to light even though they do not have eyes. Previous studies of sea urchins have shown that they have a large number of genes linked to the development of the retina, which is the light-sensitive tissue in the human eye. This means that sea urchins have several genes that are coded for a widely occurring eye protein, opsin.

“It was this discovery that underpinned our research,” says Sam Dupont from the University of Gothenburg’s Department of Marine Ecology, one of the researchers behind the study and co-authors of the article. “We wanted to see where the opsin was located in sea urchins so that we could find the sensory light structures, or photoreceptors. We quite simply wanted to know where the sea urchin sees from.”

The research group behind the study showed that the photoreceptors seem to be located on the tip and base of the tube feet that are found all over the sea urchin’s body and are used to move.

“We argue that the entire adult sea urchin can act as a huge compound eye, and that the shadow that is cast by the animal’s opaque skeleton over the light-sensitive cells can give it directional vision,” says Dupont.

Journal: PNAS 2011/04/26
Title: Unique system of photoreceptors in sea urchin tube feet
Authors: Esther M Ullrich-Lüter, Sam Dupont, Enrique Arboledac , Harald Hausend, and Maria Ina Arnonec
For further information, please contact:
Sam Dupont, Department of Marine Ecology, University of Gothenburg, tel: +46 (0)523 18 534, e-mail: sam.dupont@marecol.gu.se
Weitere Informationen:
http://www.pnas.org/content/early/2011/04/26/1018495108.abstract

Helena Aaberg | idw
Further information:
http://www.gu.se

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>