Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sea turtles’ first days of life: A sprint and a ride towards safety

24.10.2014

Scientists follow hatchlings from Cape Verde with tiny acoustic transmitters

With new nano-sized acoustic transmitters, scientists from GEOMAR Helmholtz Centre for Ocean Research Kiel, the Turtle Foundation and Queen Mary University of London were able to follow the pathways of loggerhead turtle hatchlings from Cape Verde.


Turtle hatchling with nano-tag. Photo: Rebecca Scott, GEOMAR

The tiny animals quickly swim through predator-rich coastal waters and are then dispersed by nearby ocean currents. According to the study, which was primarily funded by the Kiel Cluster of Excellence “The Future Ocean”, the local oceanic conditions are believed to drive the evolution of some unique swimming behaviours. The results are published in the current issue of the Proceedings of the Royal Society B.

Loggerhead turtles (Caretta caretta) from Cape Verde start their lives with a swimming sprint and a ride on favourable ocean currents. In this way, they escape quickly from predator-rich coastal areas and make their way to the safer open ocean where they spend several years feeding and growing. In this study, tiny acoustic transmitters provided direct insight into these pathways for the first time.

“Thanks to the new technology we can start to fill in key information gaps about the so-called ‘lost years’ Dr. Rebecca Scott states. Funded by the Kiel Cluster of Excellence “The Future Ocean”, the marine biologist coordinated a joint study of GEOMAR Helmholtz Centre for Ocean Research Kiel, the Turtle Foundation and the School of Biological and Chemical Sciences and Dr. Christophe Eizaguirre at the Queen Mary University of London.

“Scientists call this early life phase the ‘lost years’, because they were not able to follow new-born sea turtle hatchlings very far. Hatchlings essentially disappear into the sea until many years later when the lucky survivors return to where they born to breed. But with new techniques like nano-tags and ocean models we are able to see where the tiny young animals go. This is important because the dispersal experiences of hatchlings drive the development of their behaviours into adulthood. The more we understand about the biological and physical determinants of their dispersal and swimming behaviours, the easier we can protect this endangered species.”

In cooperation with the Turtle Foundation at Boa Vista, Cape Verde, the scientists collected hatchlings from two beaches in the northwest and southern tip of the island. Acoustic transmitters with a five millimetres wide and twelve millimetres long streamlined shape that weigh 0,4 grams in water were glued onto the shell of eleven hatchlings. The turtles were then followed at sea using a boat and acoustic receiver for up to eight hours and 15 kilometres. In addition, the swimming behaviour of 16 hatchlings were monitored in “hatchling swimming pools” for several days using data loggers made by engineers at GEOMAR. The turtles swam continuously during their first 24 hours after hatching and then switched to a pattern of activity at daytime and inactivity at night.

Due to the close proximity of offshore currents in this region, it seems the Cape Verdean hatchlings can sleep more at night than hatchlings from other places. For example in America, different research groups have shown that they would have swim a lot more to reach offshore currents”, Dr. Scott explains. “Deep oceanic water and favourable currents, which then determined the travel directions and speeds of our Cape Verdean turtles are situated very near to their nests. Therefore, it is very beneficial for turtles if local oceanic conditions drive the evolution of swimming behaviours that are unique to different nesting locations to ensure their best survival outcomes. It seems that turtles are born with these unique locally adapted behaviours.”

Finally, because larger animals kept swimming for a longer time than smaller individuals, a larger body size is thought to be a good sign of fitness. “But there is some evidence emerging that higher nest temperatures may reduce the size of hatchlings. Therefore, it might be possible that global warming decreases the fitness of the sea turtles by threatening them in more subtle ways than just obvious dangers like the loss of nesting beaches”, Dr. Scott assumes.

Original publication:
Scott, R., Biastoch, A., Roder, C., Stiebens, V. A. and Eizaguirre, C., 2014: Nano-tags for neonates and ocean-mediated swimming behaviours linked to rapid dispersal of hatchling sea turtles. Proc. R. Soc. B., 218, 20141209, doi:10.1098/rspb.2014.1209

Links:
Cluster of Excellence “The Future Ocean”
Turtle Foundation
The School of Biological and Chemical Sciences at the Queen Mary University of London

Contact:

Rebecca Scott (GEOMAR, FB3-EV), Tel.: +49 431 600-4569, rscott@geomar.de
Maike Nicolai (GEOMAR Communication & Media) Tel.: +49 431 600-2807, mnicolai@geomar.de

Maike Nicolai | Eurek Alert!
Further information:
http://www.geomar.de/en/news/article/der-start-ins-leben-ein-sprint-und-ein-ritt-auf-der-stroemung/

Further reports about: Cluster of Excellence GEOMAR Ocean Ocean Research Turtle acoustic hatchlings swimming tiny transmitters

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>