Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Research team overcomes major obstacle for stem cell therapies and research

09.09.2011
Stem cells show great potential to enable treatments for conditions such as spinal injuries or Lou Gehrig's disease, and also as research tools.

One of the greatest problems slowing such work is that researchers have found major complications in purifying cell mixtures, for instance to remove stem cells that can cause tumors from cells developed for use in medical treatments. But a group of Scripps Research scientists, working with colleagues in Japan, have developed a clever solution to this purification problem that should prove more reliable than other methods, safer, and perhaps 100 times cheaper.

The work appears in the current edition of the journal Cell Research.

Effective tricks for separating stem cells from other types are essential for many emerging medical treatments. These techniques begin with researchers inducing stem cells to take specific forms, or differentiate, for instance into nerve cells. These differentiated cells might then be used to repair a spinal cord injury. Other cells might enable a diabetic's body to produce adequate insulin.

A key problem is that in the differentiation process, at least some stem cells inevitably remain in their undifferentiated, or pluripotent, state. These cells can grow to form tumors in patients if injected along with differentiated cells, a concern that has already led the US Food and Drug Administration (FDA) to delay clinical trials for promising stem cell-based therapies.

A New Approach

To date, almost all attempts at purification have focused on developing antibodies—immune system attack cells—that can remove or destroy stem cells in mixtures. But this approach has had shortcomings. Effective antibodies are difficult and expensive to develop, and their use in medical therapies raises safety issues because they are produced in animals.

The Scripps Research team, led by Professor of Developmental Neurobiology Jeanne Loring, was looking for a new route to solve the purification and safety problems. The group recently began experimenting with chip-based tools known as lectin arrays. At various points on these devices, plant-produced proteins called lectins are attached. These lectins bind with specific sugars including some found on the surface of cells.

Working in the lab with cellular components, rather than whole cells, the Loring team first found that specific combinations of sugars and proteins known as glycoproteins on stem cells reliably bind to certain lectins. They were then able to exploit this connection to purify cell mixtures.

"When we discovered there was a specific binding pattern, we decided we should just go for it and see whether we could use the lectins to purify cells," said Yu-Chieh Wang, the first author of the research article. "We tested the idea and it works very well, and lectins are readily available and inexpensive."

After identifying the lectin that bound best with stem cells, the group took the work to the next level to show that they could actually separate out stem cells. To accomplish this, they first attached the lectin to tiny beads. Then they exposed these beads to mixtures of stem cells along with non-stem cells.

The researchers used a range of different types of both embryonic stem cells and induced pluripotent cells, which are embryonic stem cell-like cells that are produced by inserting certain genes into skin cells. They included cell lines from both Scripps Research and the labs of their collaborators in Japan and the United States.

In every case, the team found that the stem cells bound remarkably well to the beads, while the cells that washed past were almost all non-stem cells; this meant that both cell types could be collected separately for use in research or in treatments.

Purity's Potential

Possible uses for the new technique are essentially as numerous as those for stem cells themselves. Lectin purification could be used with any of a huge range of therapies currently in development. In addition to low cost and reliability, the lectins used are plant products, so they do not introduce the type of safety concerns that could arise from using antibodies that are produced by animal cells.

Even in more basic research, effective studies using stem or differentiated cells generally requires purification so that effects can be identified and tracked without introducing complications from impurities in a group of cells.

Loring's group, for instance, is studying the production of nerve cells that might be used to treat a specific type of autism caused by a known genetic mutation. Producing the nerve cells needed is a laborious process that will be more efficient with better purification.

The Loring team is also working to identify different binding patterns that would allow them to similarly purify mixtures of specific types of non-stem cells. "In theory, this should allow us to pull any cell type out of any mixture," she said of the basic lectin technique.

At the more basic research level, because all the different stem cell lines from both humans and animals seem to produce similar glycoproteins binding to the lectins, it is possible these glycoproteins infer some basic qualities fundamental to the pluripotent state. Loring and her colleagues are exploring this possibility in hopes of better understanding stem cells' still mysterious abilities to transform into any type of cell. "We may have uncovered something really fundamental about pluripotency," said Loring.

This research was supported by the Marie Mayer Foundation, the California Institute for Regenerative Medicine, the National Institutes of Health, the Esther O'Keeffe Foundation, and the Hartwell Foundation.

In addition to Loring, authors on the paper, titled "Specific lectin biomarkers for isolation of human pluripotent stem cells identified through array-based glycomic analysis," were Yu-Chieh Wang, Ibon Garitaonandia, Ileana Slavin, Gulsah Altun, Robert Lacharite, Kristopher Nazor, Ha Tran, Candace Lynch, Trevor Leonardo, and Suzanne Peterson of Scripps Research; Ying Liu and Louise Laurent of Scripps Research and UCSD; Masato Nakagawa of the Center for iPS Cell Research and Application (CiRA), Kyoto University; and Shinya Yamanaka of CiRA and the Gladstone Institute of Cardiovascular Disease in San Francisco. For more information, see http://www.cell-research.com/AOP/September-6-4.htm .

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Equipping form with function

23.06.2017 | Information Technology

New design improves performance of flexible wearable electronics

23.06.2017 | Materials Sciences

Individualized fiber components for the world market

23.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>