Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Research team provides groundbreaking new understanding of stem cells

03.05.2010
The surprising biochemical findings may improve scientists' ability to manipulate cell fate and promote healing

In findings that could one day lead to new therapies, researchers from The Scripps Research Institute have described some striking differences between the biochemistry of stem cells versus mature cells.

The study, led by Scripps Research Associate Professor Sheng Ding and Senior Director of the Scripps Research Center for Mass Spectrometry Gary Siuzdak, was published in an advance, online edition of the prestigious journal Nature Chemical Biology on May 2, 2010.

In the research, the team used a unique approach to better understand stem cells, which have the ability to change or "differentiate" into adult cell types (such as hair cells, skin cells, nerve cells). Understanding how stem cells mature opens the door for scientists and physicians to manipulate the process to meet the needs of patients, potentially treating such intractable conditions as Parkinson's disease and spinal injury.

"In the past, scientists trying to understand stem cell biology focused on genes and proteins," said Ding. "In our study, we looked at stem cell regulation in a different way—on the biochemical level, on a functional level. With metabolomics profiling, we were able to look at naturally occurring small molecules and how they control cell fate on a completely different level."

The new paper describes parts of the stem cell "metabolome"— the complete set of substances ("metabolites") formed in metabolism, including all naturally occurring small molecules, biofluids, and tissues. The scientists then compared this profile to those of more mature cells, specifically of nerve cells and heart cells.

When the results were tallied, the scientists had found about 60 previously unidentified metabolites associated with the progression of stem cells to mature cells, as well as an unexpected pattern in the chemistry that mirrored the cells' increasing biological maturity.

Ripe for Discovery

The study of metabolomics is relatively new, having emerged only over the past decade or so.

"One of the most interesting aspects of metabolomics is how little we know," commented Siuzdak. "We don't know what the vast majority of metabolites are, or what they do. It is an area ripe for discovery."

Research in metabolomics is made possible by a variety of special techniques and equipment. In the current study, the team used liquid chromatography-mass spectrometry (LCMS), which draws on two more traditional techniques to provide scientists with the ability to chemically analyze virtually any molecular species. The group then analyzed the resulting data using an open-access bioinformatics platform XCMS, a now-popular technique developed by Siuzdak and colleagues described in a 2006 article in the journal Analytical Chemistry. The XCMS software allows researchers to identify and assess metabolite and peptide features that show significant change between sample groups—in this case mouse stem cells versus mature cells.

The most difficult part of untargeted metabolomics studies is analyzing the results and characterizing metabolites, according to Research Associate Oscar Yanes of the Siuzdak lab, the new paper's first author.

Nevertheless, Yanes shifted though the data on stem cells and identified an unexpected pattern: stem cell metabolites had highly unsaturated structures compared with mature cells, and levels of highly unsaturated molecules decreased as the stem cells matured. Highly unsaturated molecules, which contain little hydrogen, can easily react and change into many other different types of molecules.

"The study reveals an astounding cellular strategy," commented Yanes. "The capacity of embryonic stem cells to generate a whole spectrum of cell types characteristic of different tissues (a phenomenon referred to as plasticity) is mirrored at the metabolic level."

"We were not expecting these results," said Siuzdak, "although in retrospect it makes sense that stem cells (which can form almost any cell) have metabolites that are chemically flexible."

Confirming their observations, the researchers found that by chemically blocking the usual route to saturation—oxidation—they were able to prevent stem cells' normal progress into mature heart and nerve cells. Conversely, when specific oxidized metabolites were introduced into the culture, stem cell differentiation was promoted.

Ding notes the study also provides a new perspective on fatty acids similar to those found in fish oil and other nutriceuticals.

"In the past, people focused on the fact that fatty acids were important to create cell membranes, the scaffolding of our cells," said Ding. "But in our study, we show that different fatty acids don't just play a role in constituting cell membranes, but also have functions in directing cell fate."

In addition to Siuzdak, Ding, and Yanes, authors of the paper, "Metabolic oxidation regulates embryonic stem cell differentiation," are Julie Clark, Diana M Wong, Gary J Patti, Antonio Sanchez-Ruiz, H Paul Benton, Sunia A Trauger, and Caroline Desponts, all of Scripps Research.

This study was supported by grants from the California Institute for Regenerative Medicine, Department of Energy, National Science Foundation, National Cancer Institute, and the National Institutes of Health, as well as a postdoctoral fellowship from Fundación Ramón Areces.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations, at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune, cardiovascular, and infectious diseases, and synthetic vaccine development. Established in its current configuration in 1961, it employs approximately 3,000 scientists, postdoctoral fellows, scientific and other technicians, doctoral degree graduate students, and administrative and technical support personnel. Scripps Research is headquartered in La Jolla, California. It also includes Scripps Florida, whose researchers focus on basic biomedical science, drug discovery, and technology development. Scripps Florida is located in Jupiter, Florida.

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>