Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Research team 'watches' formation of cells' protein factories for first time

01.11.2010
Work could help unravel complexities of the cell and lead to new antibiotics and disease treatments

For Immediate Release – A team from The Scripps Research Institute has revealed the first-ever pictures of the formation of cells' "protein factories." In addition to being a major technical feat on its own, the work could open new pathways for development of antibiotics and treatments for diseases tied to errors in ribosome formation. In addition, the techniques developed in the study can now be applied to other complex challenges in the understanding of cellular processes.

Identifying and observing the molecules that form ribosomes—the cellular factories that build the proteins essential for life—has for decades been a key goal for biologists but one that had seemed nearly unattainable. But the new Scripps Research study, which appears in the October 29, 2010 issue of the journal Science, yielded pictures of the chemical intermediate steps in ribosome creation.

"For me it was a dream experiment," said project leader James Williamson, Ph.D., professor, member of the Skaggs Institute for Chemical Biology, and dean of graduate and postgraduate studies at Scripps Research, who credits collaborators at the Scripps Research National Resource for Automated Molecular Microscopy (NRAMM) facility for making it possible. "We have great colleagues at Scripps to collaborate with who are willing to try some crazy experiments, and when they work it's just beautiful."

Past studies of the intermediate molecules that combine to form ribosomes and other cellular components have been severely limited by imaging technologies. Electron microscopy has for many years made it possible to create pictures of such tiny molecules, but this typically requires purification of the molecules. To purify, you must first identify, meaning researchers had to infer what the intermediates were ahead of time rather than being able to watch the real process.

"My lab has been working on ribosome assembly intensively for about 15 years," said Williamson. "The basic steps were mapped out 30 years ago. What nobody really understood was how it happens inside cells."

Creating a New View

The NRAMM group, led by Scripps Research Associate Professors Clinton Potter and Bridget Carragher and working with Scripps Research Kellogg School of Science and Technology graduate students Anke Mulder and Craig Yoshioka, developed a new technique, described in the Science paper and dubbed discovery single-particle profiling, which dodges the purification problem by allowing successful imaging of unpurified samples. An automated data capture and processing system of the team's design enables them to decipher an otherwise impossibly complex hodgepodge of data that results.

For this project, second author Andrea Beck, a research assistant in the Williamson laboratory, purified ribosome components from cells of the common research bacterium Escherichia Coli. She then chemically broke these apart to create a solution of the components that form ribosomes. The components were mixed together and then were rapidly stained and imaged using electron microscopy. "We went in with 'dirty' samples that contained horribly complex mixtures of all different particles," said Williamson.

Mulder, who is first author on the paper, collected and analyzed the particles that were formed during the ribosome assembly reaction. Using the team's advanced algorithms, they were able to process more than a million data points from the electron microscope to ultimately produce molecular pictures.

The Pieces Fit

The team produced images that the scientists were able to match like puzzle pieces to parts of ribosomes, offering strong confirmation that they had indeed imaged and identified actual chemical intermediates in the path to ribosome production. "We always saw the same thing no matter how we processed the data, and this led us to believe this was real," said Williamson.

Further confirmation came as the researchers imaged components from different timeframes. After breaking down ribosome components, the scientists prepared samples at various stages allowing enough time for the molecular mix to begin combining as they do during ribosome creation in cells.

Imaging this time series, the team was able to show higher concentrations of larger, more complex molecules and fewer smaller molecules as time elapsed. These results fit with the limited information that was already available about the timing of formation steps, providing further confirmation of the team's success.

Interestingly, this work also confirmed that there are more than one possible paths in ribosome formation, a phenomenon known as parallel assembly that been suggested by prior research but never definitively confirmed.

Long-Term Potential

Williamson says that with the information now at hand, they will be able to move forward with studies of which additional molecules might be present in cells and essential for ribosome formation. Such data could offer exciting medical potential.

All bacteria contain and are dependent on ribosomes. Identification of molecules required for ribosome assembly could offer new targets for antibiotic drugs aimed at killing bacteria. "If we can figure out how to inhibit assembly, that would be a very important therapeutic avenue," said Williamson.

There are also indications that some diseases such as Diamond Blackfan Anemia might be caused, at least in some cases, by errors in ribosome production. Better understanding of that production could also reveal ways such errors might be repaired to cure or prevent disease.

At the more basic level, this successful project has also proven techniques that Scripps Research scientists and other researchers can apply to allow similar imaging and understanding of other complex but critical cellular processes.

In addition to Williamson, Mulder, Beck, Yoshioka, Potter, and Carragher, authors of the paper, entitled "Visualizing Ribosome Biogenesis: Parallel Assembly Pathways for the 30S Subunit," were Anne Bunner and Ronald Milligan from Scripps Research.

This research was supported by the National Institutes of Health and a fellowship from the National Science Foundation.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations, at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune, cardiovascular, and infectious diseases, and synthetic vaccine development. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, Scripps Research currently employs approximately 3,000 scientists, postdoctoral fellows, scientific and other technicians, doctoral degree graduate students, and administrative and technical support personnel. Headquartered in La Jolla, California, the institute also includes Scripps Florida, whose researchers focus on basic biomedical science, drug discovery, and technology development. Scripps Florida is located in Jupiter, Florida. For more information, see www.scripps.edu

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>