Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps research study describes new tool in the fight against autoimmune diseases, blood cancers

01.12.2009
Novel approach facilitates identification of molecules that prevent immune cells from attacking the body

A study led by a Scripps Research Institute scientist describes a new, highly pragmatic approach to the identification of molecules that prevent a specific type of immune cells from attacking their host. The findings add a powerful new tool to the ongoing search for potential treatments for autoimmune diseases, such as multiple sclerosis (MS), as well as blood cancers, such as myeloid leukemia.

The study by Thomas Kodadek, a professor in the Chemistry and Cancer Biology Departments at Scripps Florida, and colleagues was published in the November 25, 2009 issue (Volume 16, issue 11) of the journal Chemistry & Biology.

In the new study, Kodadek and his colleagues used samples from an animal model of multiple sclerosis to screen for T cells—a type of white blood cell that plays a central role in the immune system—with a heightened presence in the disease. The screen also identified molecules that interfere with these T cells' "autoreactivity," in other words, their attack on the body itself rather than a foreign invader such as virus or bacteria.

"Our technique simultaneously uncovers and isolates autoreactive T cells as well as inhibitors to them," Kodadek said. "It's a double whammy. At the heart of this is a comparative screening process of normal T cells versus disease-causing T cells. While the process is technically complicated and difficult, the thinking behind it is not. We wanted to simplify the process of identifying compounds that could inhibit autoreactive T cells with exceptional specificity, and we succeeded."

The scientists used a model of MS, an autoimmune inflammatory disease affecting the brain and spinal cord, for the study. In MS, the immune system attacks the myelin sheath covering and protecting nerve cells, leading to a variety of symptoms depending on which part of the nervous system is affected. Common symptoms of the condition include fatigue; numbness; walking, balance, and coordination problems; bladder and bowel dysfunction; vision problems; dizziness and vertigo; sexual dysfunction; pain; cognitive problems; emotional changes; and spasticity.

Simplifying the Process

In setting up the new method to shed light on such autoimmune diseases and other disorders, Kodadek and his colleagues created a large collection of peptoids—molecules related to, but more stable than, the peptides that make up proteins. By arranging thousands of peptoids on a microscope slide, the pattern of binding antibodies (a type of immune molecule) and peptoids can be visualized. By looking at samples from animal models of a known disease like MS, peptoids that bind to antibodies closely associated with that disease can be easily recognized.

Better still, peptoids that bind to autoreactive T cells can be identified without knowledge of the specific antigen (molecule triggering the immune attack), providing an unbiased method with which to search for potentially useful compounds.

Most autoimmune research has focused on finding the disease-causing antigens first, Kodadek said, a Quixote-like quest that has lasted more than four decades with little success to show for it.

"With our process, it doesn't really matter what the antigen is," said Kodadek, a 2006 recipient of the National Institutes of Health Director's Pioneer Award, which is designed to support individual scientists of exceptional creativity. "That was really the breakthrough. We're setting up a system that recognizes T cell receptors that are very abundant in a sick animal and at low levels in a healthy animal. Why the abundance? Because that's what making them sick."

Potential for Therapeutic Discovery

The new process creates new potential for therapeutic discovery. Molecules that target autoreactive T cells directly, while ignoring those T cells that recognize foreign antigens, could serve as the foundation for a novel drug development program aimed at eradicating autoreactive cells without affecting the normal function of the immune system.

"Almost without exception, drugs currently used to treat autoimmune conditions either inhibit something downstream of the autoimmune response itself, like inflammation, or they moderate the immune system non-selectively and that results in significant side effects," Kodadek said.

However, the new study isn't the final answer, according to Kodadek. He noted that the recent study used a model of MS triggered by a single antigen. In humans, there could be two—or two dozen—antigens triggering an autoimmune disease such as MS. This calls for further research. The method may be more easily applied to blood cancers, though, since the disease-causing T cells have been fully characterized and there are very few of them.

The first author of the study, Isolation of Antagonists of Antigen-Specific Autoimmune T Cell Proliferation, is Anne R. Gocke of the University of Texas Southwestern Medical Center; other authors include D. Gomika Udugamasooriya, Chase T. Archer, and Jiyong Lee, also of the University of Texas Southwestern Medical Center. For more information, see http://www.cell.com/chemistry-biology/abstract/S1074-5521%2809%2900362-7.

The study was supported by the National Institutes of Health.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations, at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune, cardiovascular, and infectious diseases, and synthetic vaccine development. Established in its current configuration in 1961, it employs approximately 3,000 scientists, postdoctoral fellows, scientific and other technicians, doctoral degree graduate students, and administrative and technical support personnel. Scripps Research is headquartered in La Jolla, California. It also includes Scripps Florida, whose researchers focus on basic biomedical science, drug discovery, and technology development. Scripps Florida is located in Jupiter, Florida.

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>