Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps research study describes new tool in the fight against autoimmune diseases, blood cancers

01.12.2009
Novel approach facilitates identification of molecules that prevent immune cells from attacking the body

A study led by a Scripps Research Institute scientist describes a new, highly pragmatic approach to the identification of molecules that prevent a specific type of immune cells from attacking their host. The findings add a powerful new tool to the ongoing search for potential treatments for autoimmune diseases, such as multiple sclerosis (MS), as well as blood cancers, such as myeloid leukemia.

The study by Thomas Kodadek, a professor in the Chemistry and Cancer Biology Departments at Scripps Florida, and colleagues was published in the November 25, 2009 issue (Volume 16, issue 11) of the journal Chemistry & Biology.

In the new study, Kodadek and his colleagues used samples from an animal model of multiple sclerosis to screen for T cells—a type of white blood cell that plays a central role in the immune system—with a heightened presence in the disease. The screen also identified molecules that interfere with these T cells' "autoreactivity," in other words, their attack on the body itself rather than a foreign invader such as virus or bacteria.

"Our technique simultaneously uncovers and isolates autoreactive T cells as well as inhibitors to them," Kodadek said. "It's a double whammy. At the heart of this is a comparative screening process of normal T cells versus disease-causing T cells. While the process is technically complicated and difficult, the thinking behind it is not. We wanted to simplify the process of identifying compounds that could inhibit autoreactive T cells with exceptional specificity, and we succeeded."

The scientists used a model of MS, an autoimmune inflammatory disease affecting the brain and spinal cord, for the study. In MS, the immune system attacks the myelin sheath covering and protecting nerve cells, leading to a variety of symptoms depending on which part of the nervous system is affected. Common symptoms of the condition include fatigue; numbness; walking, balance, and coordination problems; bladder and bowel dysfunction; vision problems; dizziness and vertigo; sexual dysfunction; pain; cognitive problems; emotional changes; and spasticity.

Simplifying the Process

In setting up the new method to shed light on such autoimmune diseases and other disorders, Kodadek and his colleagues created a large collection of peptoids—molecules related to, but more stable than, the peptides that make up proteins. By arranging thousands of peptoids on a microscope slide, the pattern of binding antibodies (a type of immune molecule) and peptoids can be visualized. By looking at samples from animal models of a known disease like MS, peptoids that bind to antibodies closely associated with that disease can be easily recognized.

Better still, peptoids that bind to autoreactive T cells can be identified without knowledge of the specific antigen (molecule triggering the immune attack), providing an unbiased method with which to search for potentially useful compounds.

Most autoimmune research has focused on finding the disease-causing antigens first, Kodadek said, a Quixote-like quest that has lasted more than four decades with little success to show for it.

"With our process, it doesn't really matter what the antigen is," said Kodadek, a 2006 recipient of the National Institutes of Health Director's Pioneer Award, which is designed to support individual scientists of exceptional creativity. "That was really the breakthrough. We're setting up a system that recognizes T cell receptors that are very abundant in a sick animal and at low levels in a healthy animal. Why the abundance? Because that's what making them sick."

Potential for Therapeutic Discovery

The new process creates new potential for therapeutic discovery. Molecules that target autoreactive T cells directly, while ignoring those T cells that recognize foreign antigens, could serve as the foundation for a novel drug development program aimed at eradicating autoreactive cells without affecting the normal function of the immune system.

"Almost without exception, drugs currently used to treat autoimmune conditions either inhibit something downstream of the autoimmune response itself, like inflammation, or they moderate the immune system non-selectively and that results in significant side effects," Kodadek said.

However, the new study isn't the final answer, according to Kodadek. He noted that the recent study used a model of MS triggered by a single antigen. In humans, there could be two—or two dozen—antigens triggering an autoimmune disease such as MS. This calls for further research. The method may be more easily applied to blood cancers, though, since the disease-causing T cells have been fully characterized and there are very few of them.

The first author of the study, Isolation of Antagonists of Antigen-Specific Autoimmune T Cell Proliferation, is Anne R. Gocke of the University of Texas Southwestern Medical Center; other authors include D. Gomika Udugamasooriya, Chase T. Archer, and Jiyong Lee, also of the University of Texas Southwestern Medical Center. For more information, see http://www.cell.com/chemistry-biology/abstract/S1074-5521%2809%2900362-7.

The study was supported by the National Institutes of Health.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations, at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune, cardiovascular, and infectious diseases, and synthetic vaccine development. Established in its current configuration in 1961, it employs approximately 3,000 scientists, postdoctoral fellows, scientific and other technicians, doctoral degree graduate students, and administrative and technical support personnel. Scripps Research is headquartered in La Jolla, California. It also includes Scripps Florida, whose researchers focus on basic biomedical science, drug discovery, and technology development. Scripps Florida is located in Jupiter, Florida.

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht New technique unveils 'matrix' inside tissues and tumors
29.06.2017 | University of Copenhagen The Faculty of Health and Medical Sciences

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>