Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Research study challenges conventional theory of modern drug design

11.10.2010
Findings could transform drug development to produce more effective treatments

Scientists from The Scripps Research Institute have uncovered new evidence that challenges the current theory about a process key to the way modern drugs are designed and how they work in the human body.

The new study was published October 10, 2010 in an advance, online edition of the journal Nature Chemical Biology.

Currently, the theory about ligands – compounds that bind to proteins and trigger a specific biological action – and how they bind to proteins runs along the lines of a one person-one vote paradigm. Ligands are considered to be the relatively static partner in the process, and easily rejected if the protein dramatically changes shape.

In contrast, working with the molecular systems that recognize the hormone estrogen, the new Scripps Research study found that as protein receptors change shape ligands can adapt to that change, binding productively to both active and inactive structures.

"To our great surprise, the ligand bound differently to the active and inactive conformations of the receptor," said Kendall Nettles, an associate professor in the Department of Cancer Biology at Scripps Florida. "This strongly suggests a novel mechanism for managing [cell] signaling activity. The implications of this are profound, both for our understanding of how ligands regulate protein activity, and as a novel approach in drug discovery."

Changing the Drug Discovery Model

In the current study, the scientists worked with a receptor (which binds substances triggering certain biological effects) for the hormone estrogen and a well known estrogen receptor antagonist (which blocks the receptor). Estrogen receptors are activated by the hormone estrogen, which is one of two primary female sex hormones (the other is progesterone). Disturbances in estrogen levels play a role in number of disorders including cancers, heart disease, and stroke in women.

When ligands bind to a specific subset of receptors, the ligands stabilize specific protein conformations, turning on (or off) molecular switches that control diverse cellular functions. For example, the binding of the breast cancer treatment tamoxifen is specific for the inactive conformation of the estrogen receptor – this locks the receptor in place, blocks the active conformation and prevents tumor growth.

"Our new findings suggest that we need to think not only about an ensemble of protein conformations, but also an ensemble of ligand binding orientations when we think about therapeutic compounds," Nettles said. "As the protein and ligand move together, each can have a unique affinity, and activity profile, which working together defines the signaling output."

Nettles is excited by the possibility the new study suggests of working with an ensemble of ligand conformations, perhaps combining one with anti-inflammatory properties – which play a role in cancer – with another that blocks tumor growth. "This would give you dual therapeutic activity, potentially doubling the effectiveness of the treatment," he said.

Nettles is also eager to find out whether the new study's findings apply to other ligand-protein pairs. "If ligand dynamics turn out to be a general feature of small molecule signaling," he said, "then our findings have the potential to transform how we think about chemical biology."

The first authors of the study, "Coupling of receptor conformation and ligand orientation determine graded activity," are John Bruning of The Scripps Research Institute and Alex A. Parent of the University of Illinois. In addition to Nettles, Bruning, and Parent, other authors include German Gil, Min Zhao and Jason Nowak of The Scripps Research Institute; Margaret C. Pace and Carolyn L. Smith of Baylor College of Medicine; Pavel V. Afonine and Paul D. Adams of the Lawrence Berkeley National Laboratory; and John A. Katzenellenbogen of the University of Illinois.

The study was supported by The National Institutes of Health.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations, at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune, cardiovascular, and infectious diseases, and synthetic vaccine development. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, Scripps Research currently employs approximately 3,000 scientists, postdoctoral fellows, scientific and other technicians, doctoral degree graduate students, and administrative and technical support personnel. Headquartered in La Jolla, California, the institute also includes Scripps Florida, whose researchers focus on basic biomedical science, drug discovery, and technology development. Scripps Florida is located in Jupiter, Florida.

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>