Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scripps Research study challenges conventional theory of modern drug design

Findings could transform drug development to produce more effective treatments

Scientists from The Scripps Research Institute have uncovered new evidence that challenges the current theory about a process key to the way modern drugs are designed and how they work in the human body.

The new study was published October 10, 2010 in an advance, online edition of the journal Nature Chemical Biology.

Currently, the theory about ligands – compounds that bind to proteins and trigger a specific biological action – and how they bind to proteins runs along the lines of a one person-one vote paradigm. Ligands are considered to be the relatively static partner in the process, and easily rejected if the protein dramatically changes shape.

In contrast, working with the molecular systems that recognize the hormone estrogen, the new Scripps Research study found that as protein receptors change shape ligands can adapt to that change, binding productively to both active and inactive structures.

"To our great surprise, the ligand bound differently to the active and inactive conformations of the receptor," said Kendall Nettles, an associate professor in the Department of Cancer Biology at Scripps Florida. "This strongly suggests a novel mechanism for managing [cell] signaling activity. The implications of this are profound, both for our understanding of how ligands regulate protein activity, and as a novel approach in drug discovery."

Changing the Drug Discovery Model

In the current study, the scientists worked with a receptor (which binds substances triggering certain biological effects) for the hormone estrogen and a well known estrogen receptor antagonist (which blocks the receptor). Estrogen receptors are activated by the hormone estrogen, which is one of two primary female sex hormones (the other is progesterone). Disturbances in estrogen levels play a role in number of disorders including cancers, heart disease, and stroke in women.

When ligands bind to a specific subset of receptors, the ligands stabilize specific protein conformations, turning on (or off) molecular switches that control diverse cellular functions. For example, the binding of the breast cancer treatment tamoxifen is specific for the inactive conformation of the estrogen receptor – this locks the receptor in place, blocks the active conformation and prevents tumor growth.

"Our new findings suggest that we need to think not only about an ensemble of protein conformations, but also an ensemble of ligand binding orientations when we think about therapeutic compounds," Nettles said. "As the protein and ligand move together, each can have a unique affinity, and activity profile, which working together defines the signaling output."

Nettles is excited by the possibility the new study suggests of working with an ensemble of ligand conformations, perhaps combining one with anti-inflammatory properties – which play a role in cancer – with another that blocks tumor growth. "This would give you dual therapeutic activity, potentially doubling the effectiveness of the treatment," he said.

Nettles is also eager to find out whether the new study's findings apply to other ligand-protein pairs. "If ligand dynamics turn out to be a general feature of small molecule signaling," he said, "then our findings have the potential to transform how we think about chemical biology."

The first authors of the study, "Coupling of receptor conformation and ligand orientation determine graded activity," are John Bruning of The Scripps Research Institute and Alex A. Parent of the University of Illinois. In addition to Nettles, Bruning, and Parent, other authors include German Gil, Min Zhao and Jason Nowak of The Scripps Research Institute; Margaret C. Pace and Carolyn L. Smith of Baylor College of Medicine; Pavel V. Afonine and Paul D. Adams of the Lawrence Berkeley National Laboratory; and John A. Katzenellenbogen of the University of Illinois.

The study was supported by The National Institutes of Health.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations, at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune, cardiovascular, and infectious diseases, and synthetic vaccine development. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, Scripps Research currently employs approximately 3,000 scientists, postdoctoral fellows, scientific and other technicians, doctoral degree graduate students, and administrative and technical support personnel. Headquartered in La Jolla, California, the institute also includes Scripps Florida, whose researchers focus on basic biomedical science, drug discovery, and technology development. Scripps Florida is located in Jupiter, Florida.

Mika Ono | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Signaling Pathways to the Nucleus
19.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht In monogamous species, a compatible partner is more important than an ornamented one
19.03.2018 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation

19.03.2018 | Information Technology

Tiny implants for cells are functional in vivo

19.03.2018 | Interdisciplinary Research

Science & Research
Overview of more VideoLinks >>>