Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Research Scientists Uncover New Role for Gene in Maintaining Steady Weight

24.11.2011
The Findings May Help Scientists Combat Obesity and Diabetes

Against the backdrop of the growing epidemic of obesity in the United States, scientists from the Florida campus of The Scripps Research Institute have made an important new discovery regarding a specific gene that plays an important role in keeping a steady balance between our food intake and energy expenditure. The study may help scientists better understand the keys to fighting obesity and related disorders such as diabetes.

The study, which was published in the November 25, 2011 print edition of The Journal of Biological Chemistry, focused on the melanocortin-3 receptor (MC3R), which normally responds to signals of nutrient intake.

“What we discovered was quite a surprise,” said Scripps Research Associate Professor Andrew Butler, who led the study. “We thought that the actions of the receptor expressed in the brain would be critical for metabolic homeostasis. However, what we found is that actions of the receptor expressed outside the brain appear to be equally important.”

The existence of drug targets in areas outside of the central nervous system (the body’s “periphery”) might help in the effort to develop drugs that influence metabolism without major side effects, Butler said.

The findings were made possible by the team’s development of a new transgenic animal model, where expression of the MC3R gene can be selectively “switched on” in different cell types.

In the study, the suppression of MC3R expression in the brain and peripheral tissues had a marked impact on metabolic homeostasis (equilibrium). Interestingly, mice expressing the MC3R gene in the brain only displayed an obese phenotype (physical appearance) similar to those where all types of expression was suppressed, indicating that actions of this receptor in the brain are not sufficient to protect against weight gain. The finding that loss of MC3R activity in the periphery impairs metabolic homeostasis is startling, Butler said, and point to a distinct role for MC3R signaling in the peripheral tissues. However, how the actions of these receptors impacts on obesity remains to be determined.

“It’s clear that these peripheral receptors are important and the new mouse model will let us explore that potential,” Butler said.

The first author of the study, “Genetic dissection of melanocortin-3 receptor function suggests roles for central and peripheral receptors in energy homeostasis,” is Karima Begriche of Scripps Research. In addition to Butler and Begriche, other authors include Jari Rossi, Danielle Skorupa, Laura A. Solt, Brandon Young, and Thomas P. Burris from The Scripps Research Institute in Florida; Randall L. Mynatt and Jingying Zhang at the Pennington Biomedical Research Center, which is part of the Louisiana State University System; and Peter R. Levasseur and Daniel L. Marks at the Oregon Health & Science University. See http://www.jbc.org/content/early/2011/10/07/jbc.M111.278374.abstract?sid=8a17ce75-de95-45d1-b688-a039da52b5f1

The study was supported by National Institutes of Health and the Pennington Biomedical Research Foundation.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neuroscience, and vaccine development, as well as for its insights into autoimmune, cardiovascular, and infectious disease. Headquartered in La Jolla, California, the institute also includes a campus in Jupiter, Florida, where scientists focus on drug discovery and technology development in addition to basic biomedical science. Scripps Research currently employs about 3,000 scientists, staff, postdoctoral fellows, and graduate students on its two campuses. The institute's graduate program, which awards Ph.D. degrees in biology and chemistry, is ranked among the top ten such programs in the nation. For more information, see www.scripps.edu.

For information:
Eric Sauter
Tel: 215-862-2689
erics165@comcast.net
Mika Ono
Tel: 858-784-2052
Fax: 858-784-8136
mikaono@scripps.edu

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>