Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Research scientists uncover possible cocaine addiction trigger

16.08.2010
Protein linked to mental retardation may be controlling factor in drug's effect in the brain

Scientists from the Florida campus of The Scripps Research Institute have identified a protein that may act as the trigger controlling the addictive impact of cocaine in the brain. The findings may one day lead to new therapies to treat addiction.

The study was published on August 15, 2010, in the prestigious journal Nature Neuroscience.

The results from the new study strongly suggest that a protein known as methyl CpG binding protein 2 (MeCP2) interacts with a type of genetic material known as microRNA to control an individual's motivation to consume cocaine.

"The study shows that MeCP2 blunts the amount by which microRNA-212 is increased in response to cocaine," said Paul Kenny, an associate professor in the Department of Molecular Therapeutics at Scripps Florida who led the study. "We have previously shown that miR-212 is very protective against cocaine addiction. Therefore, the conclusion is that MeCP2 may regulate vulnerability to addiction in some people through its inhibitory influence on miR-212. Without this influence, the expression of miiR-212 would be far greater in response to cocaine use, and the risk of addiction would likely be far lower."

This is the first time that MeCP2 has been shown to play a role in regulating cocaine addiction. Previously, the protein was most linked to Rett syndrome, a progressive neurodevelopmental disorder and one of the most common causes of mental retardation in females.

Interactions Shape Vulnerability

These new findings come on the heels of another cocaine addiction study by Kenny and his Scripps Florida colleagues published in the journal Nature in early July. That study showed for the first time that miR-212 — a type of small non-protein coding RNA that can regulate the expression levels of hundreds or even thousands of genes —influenced response to the drug in rats. Animals with increased miR-212 expression were less motivated to consume cocaine, pointing to the protective effects of miR-212 against cocaine addiction.

"The new findings are a significant advance from this previous study," Kenny said, "because they clearly demonstrate why microRNA-212 is not always fully protective – because MeCP2 regulates by how much miR-212 levels will increase in response to cocaine. This suggests that our initial findings may be central to explaining the complex process of addiction, and understanding how miR-212 signaling is regulated will be important. This study adds another level of detail to the blueprint."

A major goal of drug abuse research is to understand why certain individuals make the switch from casual to compulsive drug use and develop into addicts. Periods of easy access to the drug, along with repeated overconsumption, can quickly trigger the emergence of addiction-like abnormalities in animal models.

In the new study, the scientists first looked at the expression of MeCP2 in the brain after exposure to cocaine. They found that expression was increased in those animals given extended access to the drug.

"At that point," Kenny said, "we wanted to know if this increase was behaviorally significant – did it influence the motivation to take the drug?"

Using a virus to disrupt expression of MeCP2, the scientists found that rats consumed less and less cocaine. Intriguingly, levels of miR-212 were also far higher in those animals. Because increases in miR-212 suppress attraction to cocaine, the disruption of MeCP2, in essence, put miR-212 in charge and reduced vulnerability to the drug.

"We concluded that MeCP2 may play an important role in addiction by regulating the magnitude by which miR-212 expression is increased in response to cocaine," said Kenny. "In other words, MeCP2 seems to control just how much you can protect yourself against the addictive properties of cocaine."

Intriguingly, that was not the end of the story. In addition to MeCP2 blunting miR-212 expression, the scientists also found that the opposite was also true – that miR-212 could in turn decrease levels of MeCP2. This suggests that both are locked together in a regulatory loop. Importantly, the two had opposite effects on the expression of a particular growth factor in the brain – called BDNF – that regulates just how rewarding cocaine is.

While the new study fills in an important piece of the puzzle, the Kenny lab is hard at work to further increase our understanding of addiction.

"We still don't know what exactly influences the activity levels of MeCP2 on miR-212 expression," Kenny said. "Now we plan to explore what drives it – whether it's environmentally driven, and if genetic and epigenetic influences are important."

The first author of the study, "MeCP2 Controls BDNF Expression and Cocaine Intake through Homeostatic Interactions with microRNA-212," is Heh-In Im of The Scripps Research Institute. Other authors include Jonathan A. Hollander and Purva Bali, also of Scripps Research.

The study was supported by the National Institutes of Health, Ruth L. Kirschstein National Research Service Awards, and The National Alliance for Research on Schizophrenia and Depression.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations, at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune, cardiovascular, and infectious diseases, and synthetic vaccine development. Established in its current configuration in 1961, it employs approximately 3,000 scientists, postdoctoral fellows, scientific and other technicians, doctoral degree graduate students, and administrative and technical support personnel. Scripps Research is headquartered in La Jolla, California. It also includes Scripps Florida, whose researchers focus on basic biomedical science, drug discovery, and technology development. Scripps Florida is located in Jupiter, Florida.

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>