Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Research scientists solve mystery of fragile stem cells

13.04.2010
The groundbreaking new findings will speed research on potential therapies

Scientists at The Scripps Research Institute have solved the decade-old mystery of why human embryonic stem cells are so difficult to culture in the laboratory, providing scientists with useful new techniques and moving the field closer to the day when stem cells can be used for therapeutic purposes.

The research is being published in the journal Proceedings of the National Academy of Sciences (PNAS) during the week of April 12, 2010.

"This paper addresses a long-standing mystery," said Scripps Research Associate Professor Sheng Ding, who is senior author of the paper. "Scientists have been puzzled by why human embryonic stem cells die at a critical step in the culture process. In addition to posing a question in fundamental biology, this created a huge technical challenge in the lab."

The new paper, however, provides elegant solutions to both aspects of this problem.

In the study, the team discovered two novel synthetic small molecule drugs that can be added to human stem cell culture that each individually prevent the death of these cells. The team also unravels the mechanisms by which the compounds promote stem cell survival, shedding light on a previously unknown aspect of stem cell biology.

Notorious Fragility

The hope of most researchers in the field is that one day it will be possible to use stem cells — which possess the ability to develop into many other distinct cell types, such as nerve, heart, or lung cells — to repair damaged tissue from any number of diseases, from Type 1 diabetes to Parkinson's disease, as well as from injuries.

Laboratory work with human embryonic stem cells, however, has been hampered by their notorious fragility. In the process of growing stem cells in culture, scientists must split off cells from their cell colonies. At this point in the process, however, human embryonic stem cells die unless the scientists take extraordinary care that this does not happen.

"The current techniques to keep these cells alive are tedious and labor-intensive," said Ding. "Keeping the cells alive is so difficult that some people are discouraged from entering the field. It is very frustrating experience for everyone."

Mysteriously, mouse embryonic stem cells—which share much basic biology with human embryonic stem cells—do not pose the same difficulties in the laboratory. They can usually be split off from a colony and go on to survive and thrive.

To address these issues, the scientists decided to start with a screen of a library of chemical compounds to see if they could find any small molecules that could be added to the human embryonic stem cell culture that would promote the cells' survival.

When the scientists examined their results, they were elated to find two novel compounds (named Thiazovivin and Pyrintegrin) that both worked to dramatically protect the cells, promoting human embryonic stem cell survival by more than 30 fold.

"Basically, this solved this cell survival problem that has been plaguing scientists for more than 10 years," said Ding.

The Importance of Interaction

But the scientists didn't stop there.

Next, using the two new survival-promoting small molecules as clues, the scientists set out to understand the biological mechanism behind the cells' survival or demise. By examining cell growth in the presence and absence of the compounds, the team found that the key factor was a protein on the cell surface called e-cadherin, which mediates interactions among cells and between cells and the extracellular matrix (a structure present between a variety of animal cells that provides support and anchorage for cells and regulates intercellular communication).

"While in the past people have often talked about the proteins in cell nucleus as regulating stem cell function, our study puts the focus on a different area," said Ding. "E-cadherin is a protein on the cell surface that is very important to cell survival and cell growth."

The team found that when human embryonic stem cells are cut out from the colony, this key protein is disrupted and then internalized within the cell. Without e-cadherin on the cell surface, cell signaling between the cells and their environment is disrupted and the cells quickly die.

Both chemical compounds identified by the study, however, protected e-cadherin from damage.

In further experiments, the scientists found that the key difference between human and mouse embryonic stem cells lay not only within the cells themselves, but also in and controlled by their microenvironment—the surrounding cells, signaling factors, and extracellular matrix. The scientists were able to transfer human embryonic stem cells into a mouse embryonic stem cell microenvironment. There, the scientists found, human cells were more likely to survive, even without the survival-promoting compounds.

Moreover, when the scientists chemically induced human embryonic stem cells back to an earlier stage of development—which had an extracellular environment similar to mouse embryonic stem cells conventionally used in the laboratory—there were also no longer problems growing them in culture.

"This validated our mechanistic investigations from a different angle," said Ding, "showing that we had dissected out a very core regulatory mechanism."

Ding expects that the methods discussed in the new study will soon be widely adopted by stem cell laboratories around the world.

"My lab currently uses the novel small molecules indentified in this study on a routine basis, making our life significantly easier and advancing our efforts," said Ding. "Even more, chemically inducing human embryonic stem cells back to an earlier stage of development has advantages for some areas of investigation."

The first author of the paper, "Revealing a core signaling regulatory mechanism for pluripotent stem cell survival and self-renewal by small molecules," is Yue Xu of Scripps Research. In addition to Ding, other authors include Xiuwen Zhu, Heung Sik Hahm, and Wanguo Wei of Scripps Research and Ergeng Hao and Alberto Hayek of the University of California, San Diego.

The research was supported by grants from The Scripps Research Institute.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations, at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune, cardiovascular, and infectious diseases, and synthetic vaccine development. Established in its current configuration in 1961, it employs approximately 3,000 scientists, postdoctoral fellows, scientific and other technicians, doctoral degree graduate students, and administrative and technical support personnel. Scripps Research is headquartered in La Jolla, California with a second campus located in Jupiter, Florida. Research at Scripps Florida focuses on basic biomedical science, drug discovery, and technology development.

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>