Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Research scientists solve mystery of fragile stem cells

13.04.2010
The groundbreaking new findings will speed research on potential therapies

Scientists at The Scripps Research Institute have solved the decade-old mystery of why human embryonic stem cells are so difficult to culture in the laboratory, providing scientists with useful new techniques and moving the field closer to the day when stem cells can be used for therapeutic purposes.

The research is being published in the journal Proceedings of the National Academy of Sciences (PNAS) during the week of April 12, 2010.

"This paper addresses a long-standing mystery," said Scripps Research Associate Professor Sheng Ding, who is senior author of the paper. "Scientists have been puzzled by why human embryonic stem cells die at a critical step in the culture process. In addition to posing a question in fundamental biology, this created a huge technical challenge in the lab."

The new paper, however, provides elegant solutions to both aspects of this problem.

In the study, the team discovered two novel synthetic small molecule drugs that can be added to human stem cell culture that each individually prevent the death of these cells. The team also unravels the mechanisms by which the compounds promote stem cell survival, shedding light on a previously unknown aspect of stem cell biology.

Notorious Fragility

The hope of most researchers in the field is that one day it will be possible to use stem cells — which possess the ability to develop into many other distinct cell types, such as nerve, heart, or lung cells — to repair damaged tissue from any number of diseases, from Type 1 diabetes to Parkinson's disease, as well as from injuries.

Laboratory work with human embryonic stem cells, however, has been hampered by their notorious fragility. In the process of growing stem cells in culture, scientists must split off cells from their cell colonies. At this point in the process, however, human embryonic stem cells die unless the scientists take extraordinary care that this does not happen.

"The current techniques to keep these cells alive are tedious and labor-intensive," said Ding. "Keeping the cells alive is so difficult that some people are discouraged from entering the field. It is very frustrating experience for everyone."

Mysteriously, mouse embryonic stem cells—which share much basic biology with human embryonic stem cells—do not pose the same difficulties in the laboratory. They can usually be split off from a colony and go on to survive and thrive.

To address these issues, the scientists decided to start with a screen of a library of chemical compounds to see if they could find any small molecules that could be added to the human embryonic stem cell culture that would promote the cells' survival.

When the scientists examined their results, they were elated to find two novel compounds (named Thiazovivin and Pyrintegrin) that both worked to dramatically protect the cells, promoting human embryonic stem cell survival by more than 30 fold.

"Basically, this solved this cell survival problem that has been plaguing scientists for more than 10 years," said Ding.

The Importance of Interaction

But the scientists didn't stop there.

Next, using the two new survival-promoting small molecules as clues, the scientists set out to understand the biological mechanism behind the cells' survival or demise. By examining cell growth in the presence and absence of the compounds, the team found that the key factor was a protein on the cell surface called e-cadherin, which mediates interactions among cells and between cells and the extracellular matrix (a structure present between a variety of animal cells that provides support and anchorage for cells and regulates intercellular communication).

"While in the past people have often talked about the proteins in cell nucleus as regulating stem cell function, our study puts the focus on a different area," said Ding. "E-cadherin is a protein on the cell surface that is very important to cell survival and cell growth."

The team found that when human embryonic stem cells are cut out from the colony, this key protein is disrupted and then internalized within the cell. Without e-cadherin on the cell surface, cell signaling between the cells and their environment is disrupted and the cells quickly die.

Both chemical compounds identified by the study, however, protected e-cadherin from damage.

In further experiments, the scientists found that the key difference between human and mouse embryonic stem cells lay not only within the cells themselves, but also in and controlled by their microenvironment—the surrounding cells, signaling factors, and extracellular matrix. The scientists were able to transfer human embryonic stem cells into a mouse embryonic stem cell microenvironment. There, the scientists found, human cells were more likely to survive, even without the survival-promoting compounds.

Moreover, when the scientists chemically induced human embryonic stem cells back to an earlier stage of development—which had an extracellular environment similar to mouse embryonic stem cells conventionally used in the laboratory—there were also no longer problems growing them in culture.

"This validated our mechanistic investigations from a different angle," said Ding, "showing that we had dissected out a very core regulatory mechanism."

Ding expects that the methods discussed in the new study will soon be widely adopted by stem cell laboratories around the world.

"My lab currently uses the novel small molecules indentified in this study on a routine basis, making our life significantly easier and advancing our efforts," said Ding. "Even more, chemically inducing human embryonic stem cells back to an earlier stage of development has advantages for some areas of investigation."

The first author of the paper, "Revealing a core signaling regulatory mechanism for pluripotent stem cell survival and self-renewal by small molecules," is Yue Xu of Scripps Research. In addition to Ding, other authors include Xiuwen Zhu, Heung Sik Hahm, and Wanguo Wei of Scripps Research and Ergeng Hao and Alberto Hayek of the University of California, San Diego.

The research was supported by grants from The Scripps Research Institute.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations, at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune, cardiovascular, and infectious diseases, and synthetic vaccine development. Established in its current configuration in 1961, it employs approximately 3,000 scientists, postdoctoral fellows, scientific and other technicians, doctoral degree graduate students, and administrative and technical support personnel. Scripps Research is headquartered in La Jolla, California with a second campus located in Jupiter, Florida. Research at Scripps Florida focuses on basic biomedical science, drug discovery, and technology development.

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>