Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Research Scientists Reveal How White Blood Cell Promotes Growth and Spread of Cancer

01.09.2011
The Findings Open the Door to the Development of Novel Drugs for Early-Stage Tumors

Scientists at The Scripps Research Institute have shown that a particular white blood cell plays a direct role in the development and spread of cancerous tumors. Their work sheds new light on the development of the disease and points toward novel strategies for treating early-stage cancers.

The study was published in September 2011 print issue of the American Journal of Pathology.

Scripps Research Professor James Quigley, Staff Scientist Elena Deryugina, and colleagues had previously demonstrated that white blood cells known as neutrophils—bone marrow-derived cells that function as “first responders” at sites of acute inflammation—promote the growth of new blood vessels in normal, healthy tissue.

The team has now tied these cells to the induction and growth of new blood vessels in malignant tumors and to the spread of tumor cells through those newly formed vessels. The scientists have also uncovered some of the mechanisms underpinning this process—which could be interrupted by properly targeted drugs.

Potent and Uninhibited

The Scripps Research team has been particularly interested in neutrophils, in part because several studies have demonstrated a link between elevated neutrophil levels and high rates of tumor invasion among cancer patients. Mounting evidence has also indicated that neutrophils play a particularly important role during the early stages of tumor development.

“During tumor development, neutrophils appear to be one of the first inflammatory cell types on the scene,” said Deryugina, who spearheaded the new study.

The researchers have been especially interested in the blood vessel-forming or “angiogenic,” powers of neutrophils, which stem from a special enzyme they produce known as MMP-9 (matrix metalloproteinase type 9). The enzyme is, in fact, synthesized by a number of different types of white blood cells and has long been linked to tumor development. But the particular form synthesized by neutrophils is especially potent, in part because it does not come bound up with the natural inhibitory regulating agents that other cells supply.

Whereas other types of white blood cells only manufacture the enzyme later and invariably deliver it in combination with one of its natural inhibitors, neutrophils come loaded with pre-synthesized MMP-9 in a form that is unencumbered.

Making the Case

In a series of cleverly designed experiments, Quigley, Deryugina, and colleagues established a link between neutrophils, their MMP-9, and the growth and spread of tumors.

The scientists alternately raised and lowered the quantity of neutrophils allowed to flow into two different kinds of early-stage tumors, which had been transplanted into chicken embryos and mice. They also introduced several different versions of the enzyme, sometimes combining it with dampening agents, sometimes not.

By observing the subsequent decrease and increase in the formation of new blood vessels, the Scripps Research team was able to establish that the unique form of the enzyme delivered by neutrophils was directly responsible for heightening the growth of new blood vessels in the tumors. Just as importantly, they were able to determine that the newly formed blood vessels served as “escape routes” or conduits for the spread of tumor cells beyond their initial location.

First, the scientists established that the most aggressive tumors—that is, the ones that were able to most quickly penetrate the surrounding blood vessels and spread to different areas—depended on their ability to attract large numbers of neutrophils.

The researchers then proceeded to spur the growth of new blood vessels in even relatively nonaggressive tumors by supplying additional quantities of neutrophil-derived enzyme. They also blocked the formation of new vessels with the anti-inflammatory drug ibuprofen and then restored, or “rescued,” angiogenesis by pumping in additional enzyme.

Quigley and Deryugina also drastically reduced the influx of neutrophils by neutralizing IL-8 (interleukin 8), the chemical attractant that draws neutrophils to sites of inflammation. Blood vessel formation declined correspondingly, as did the penetration of vessels by tumor cells, clearly linking neutrophils to the development and spread of two different, but highly aggressive, forms of cancer. To further strengthen that link, the researchers again reversed the decline with an infusion of neutrophil-derived enzyme.

“By dampening neutrophil influx into tumors, we dampen angiogenesis, but we also dampen metastasis,” Quigley said. “And when we rescue angiogenesis, we also rescue the high metastatic rate of the tumors.”

Significantly, only the unregulated, uninhibited version of the enzyme provided by neutrophils reversed the dampening effect caused by reducing inflammation or cutting off the flow of neutrophils. No such rescue occurred when the enzyme was combined with its natural inhibiting agents—the same molecules that accompany the enzyme when it is delivered by other kinds of white blood cells.

Intriguing Possibilities

The scientists note that the study suggests tumors that engender a strong inflammatory response may be particularly amenable to early-stage treatment by drugs that specifically target neutrophils, whether that means inhibiting the enzyme they deliver or simply preventing them from showing up in the first place.

“It might be best to combat tumor angiogenesis earlier rather than later,” Quigley said, adding that “more specifically directed anti-neutrophil agents might be better suited than a general anti-inflammatory.”

The Quigley lab continues to investigate.

In addition to Quigley and Deryugina, authors of this paper, “Neutrophil MMP-9 in Tumor Progression” (doi:10.1016/j.ajpath.2011.05.031), include Bernhard Schweighofer, Tatyana A. Kupriyanova, Ewa Zajac, Veronica C. Ardi, all of Scripps Research; and Erin M. Bekes, formerly a UCSD graduate student doing her thesis at Scripps Research and now a postdoctoral fellow at the NYU School of Medicine. See http://www.sciencedirect.com/science/article/pii/S000294401100530X

Support for this study came from the National Institutes of Health, Scripps Translational Science Institute, the Max Kade Foundation, and the National Cancer Institute.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neuroscience, and vaccine development, as well as for its insights into autoimmune, cardiovascular, and infectious disease. Headquartered in La Jolla, California, the institute also includes a campus in Jupiter, Florida, where scientists focus on drug discovery and technology development in addition to basic biomedical science. Scripps Research currently employs about 3,000 scientists, staff, postdoctoral fellows, and graduate students on its two campuses. The institute's graduate program, which awards Ph.D. degrees in biology and chemistry, is ranked among the top ten such programs in the nation. For more information, see www.scripps.edu.

For information:
Mika Ono
Tel: 858-784-2052
Fax: 858-784-8136
mikaono@scripps.edu

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>