Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Research Scientists Reveal How White Blood Cell Promotes Growth and Spread of Cancer

01.09.2011
The Findings Open the Door to the Development of Novel Drugs for Early-Stage Tumors

Scientists at The Scripps Research Institute have shown that a particular white blood cell plays a direct role in the development and spread of cancerous tumors. Their work sheds new light on the development of the disease and points toward novel strategies for treating early-stage cancers.

The study was published in September 2011 print issue of the American Journal of Pathology.

Scripps Research Professor James Quigley, Staff Scientist Elena Deryugina, and colleagues had previously demonstrated that white blood cells known as neutrophils—bone marrow-derived cells that function as “first responders” at sites of acute inflammation—promote the growth of new blood vessels in normal, healthy tissue.

The team has now tied these cells to the induction and growth of new blood vessels in malignant tumors and to the spread of tumor cells through those newly formed vessels. The scientists have also uncovered some of the mechanisms underpinning this process—which could be interrupted by properly targeted drugs.

Potent and Uninhibited

The Scripps Research team has been particularly interested in neutrophils, in part because several studies have demonstrated a link between elevated neutrophil levels and high rates of tumor invasion among cancer patients. Mounting evidence has also indicated that neutrophils play a particularly important role during the early stages of tumor development.

“During tumor development, neutrophils appear to be one of the first inflammatory cell types on the scene,” said Deryugina, who spearheaded the new study.

The researchers have been especially interested in the blood vessel-forming or “angiogenic,” powers of neutrophils, which stem from a special enzyme they produce known as MMP-9 (matrix metalloproteinase type 9). The enzyme is, in fact, synthesized by a number of different types of white blood cells and has long been linked to tumor development. But the particular form synthesized by neutrophils is especially potent, in part because it does not come bound up with the natural inhibitory regulating agents that other cells supply.

Whereas other types of white blood cells only manufacture the enzyme later and invariably deliver it in combination with one of its natural inhibitors, neutrophils come loaded with pre-synthesized MMP-9 in a form that is unencumbered.

Making the Case

In a series of cleverly designed experiments, Quigley, Deryugina, and colleagues established a link between neutrophils, their MMP-9, and the growth and spread of tumors.

The scientists alternately raised and lowered the quantity of neutrophils allowed to flow into two different kinds of early-stage tumors, which had been transplanted into chicken embryos and mice. They also introduced several different versions of the enzyme, sometimes combining it with dampening agents, sometimes not.

By observing the subsequent decrease and increase in the formation of new blood vessels, the Scripps Research team was able to establish that the unique form of the enzyme delivered by neutrophils was directly responsible for heightening the growth of new blood vessels in the tumors. Just as importantly, they were able to determine that the newly formed blood vessels served as “escape routes” or conduits for the spread of tumor cells beyond their initial location.

First, the scientists established that the most aggressive tumors—that is, the ones that were able to most quickly penetrate the surrounding blood vessels and spread to different areas—depended on their ability to attract large numbers of neutrophils.

The researchers then proceeded to spur the growth of new blood vessels in even relatively nonaggressive tumors by supplying additional quantities of neutrophil-derived enzyme. They also blocked the formation of new vessels with the anti-inflammatory drug ibuprofen and then restored, or “rescued,” angiogenesis by pumping in additional enzyme.

Quigley and Deryugina also drastically reduced the influx of neutrophils by neutralizing IL-8 (interleukin 8), the chemical attractant that draws neutrophils to sites of inflammation. Blood vessel formation declined correspondingly, as did the penetration of vessels by tumor cells, clearly linking neutrophils to the development and spread of two different, but highly aggressive, forms of cancer. To further strengthen that link, the researchers again reversed the decline with an infusion of neutrophil-derived enzyme.

“By dampening neutrophil influx into tumors, we dampen angiogenesis, but we also dampen metastasis,” Quigley said. “And when we rescue angiogenesis, we also rescue the high metastatic rate of the tumors.”

Significantly, only the unregulated, uninhibited version of the enzyme provided by neutrophils reversed the dampening effect caused by reducing inflammation or cutting off the flow of neutrophils. No such rescue occurred when the enzyme was combined with its natural inhibiting agents—the same molecules that accompany the enzyme when it is delivered by other kinds of white blood cells.

Intriguing Possibilities

The scientists note that the study suggests tumors that engender a strong inflammatory response may be particularly amenable to early-stage treatment by drugs that specifically target neutrophils, whether that means inhibiting the enzyme they deliver or simply preventing them from showing up in the first place.

“It might be best to combat tumor angiogenesis earlier rather than later,” Quigley said, adding that “more specifically directed anti-neutrophil agents might be better suited than a general anti-inflammatory.”

The Quigley lab continues to investigate.

In addition to Quigley and Deryugina, authors of this paper, “Neutrophil MMP-9 in Tumor Progression” (doi:10.1016/j.ajpath.2011.05.031), include Bernhard Schweighofer, Tatyana A. Kupriyanova, Ewa Zajac, Veronica C. Ardi, all of Scripps Research; and Erin M. Bekes, formerly a UCSD graduate student doing her thesis at Scripps Research and now a postdoctoral fellow at the NYU School of Medicine. See http://www.sciencedirect.com/science/article/pii/S000294401100530X

Support for this study came from the National Institutes of Health, Scripps Translational Science Institute, the Max Kade Foundation, and the National Cancer Institute.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neuroscience, and vaccine development, as well as for its insights into autoimmune, cardiovascular, and infectious disease. Headquartered in La Jolla, California, the institute also includes a campus in Jupiter, Florida, where scientists focus on drug discovery and technology development in addition to basic biomedical science. Scripps Research currently employs about 3,000 scientists, staff, postdoctoral fellows, and graduate students on its two campuses. The institute's graduate program, which awards Ph.D. degrees in biology and chemistry, is ranked among the top ten such programs in the nation. For more information, see www.scripps.edu.

For information:
Mika Ono
Tel: 858-784-2052
Fax: 858-784-8136
mikaono@scripps.edu

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>