Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Research scientists reveal key structure from ebola virus

10.12.2009
Breakthrough findings point to targets for drugs and vaccines

Scientists at The Scripps Research Institute have determined the structure of a critical protein from the Ebola virus, which, though rare, is one of the deadliest viruses on the planet killing between 50 and 90 percent of those infected. Described in the advance, online Early Edition of the journal Proceedings of the National Academy of Sciences (PNAS), the research reveals how a key component of the Ebola virus, called VP35, blocks the human immune system, allowing the virus uncontrolled replication. The structure represents a major step forward in understanding how the deadly virus works, and may be useful in the development of potential treatments for those infected.

"After infection, the virus and immune system are in a race," said Erica Ollmann Saphire, Ph.D., associate professor at Scripps Research, who led the three-year effort to solve the structure. "If the virus can hide its molecular signatures, it can suppress immune responses and replicate unchecked. This new understanding of the mechanism that Ebola virus uses to evade the immune system opens the door for developing drug therapies."

A signature of Ebola virus infection is the presence of the virus's double-stranded RNA, which, when detected by immune system proteins, triggers a full immune response. The new research describes how the VP35 protein of the Ebola virus masks the double-stranded RNA to prevent the immune response.

The protein structure, determined by X-ray crystallography, showed that VP35 binds another copy of itself, and the pair cooperatively masks the RNA ends. Christopher Kimberlin, the first author of this study, explained that this assembly is unusual because each member of the pair binds the RNA in a different way, revealing that VP35 has two unique strategies for masking viral signatures. Importantly, the interface between the two VP35 molecules provides a new target for drugs that would stop Ebola virus infection and allow the immune system to clear the infection. Additional RNA binding, small angle X-ray scattering, and deuterium exchange mass spectrometry experiments confirm the cooperative function of these molecules for immunosuppression.

There is currently no cure for Ebola hemorrhagic fever. The virus is spread when people come into contact with the bodily fluids of an infected person or animal. Most die from a combination of dehydration, massive bleeding, and shock. There is currently no vaccine or drug therapy for Ebola infection, but the findings of this study may lead to new treatments.

The article, "Ebolavirus VP35 uses a bimodal strategy to bind dsRNA for innate immune suppression," was authored by Christopher Kimberlin, Zachary Bornholdt, Ian MacRae, and Erica Ollmann Saphire of The Scripps Research Institute in collaboration with Sheng Li and Virgil Woods, Jr. of the University of California San Diego. Support for the research was provided by grants from the National Institutes of Health, a Career Award from the Burroughs Wellcome Fund, and The Skaggs Institute for Chemical Biology.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations, at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune, cardiovascular, and infectious diseases, and synthetic vaccine development. Established in its current configuration in 1961, it employs approximately 3,000 scientists, postdoctoral fellows, scientific and other technicians, doctoral degree graduate students, and administrative and technical support personnel. Scripps Research is headquartered in La Jolla, California. It also includes Scripps Florida, whose researchers focus on basic biomedical science, drug discovery, and technology development.

Note: Video available upon request (Erica@scripps.edu).

A preprint of the article will be available to journalists beginning Wednesday, December 2 on a secure reporters-only website of PNAS.

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu

Further reports about: Ebola Ebola virus RNA Saphire VP35 X-ray microscopy immune response immune system virus infection

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>